Disadvantages

The downside of JPEG compression is that the algorithm is only designed for continuous tone images (remember that the P in JPEG stands for Photographic). JPEG not does not lend itself for images with sharp changes in tone. There are some typical types of images where JPEG should be avoided:

  • images that have had a mask and shadow effect added to them in applications like Photoshop.
  • screendumps or diagrams.
  • blends created in Photoshop.
  • images containing 256 (or less) colors.
  • images generated by CAD-CAM software or 3D applications like Maya or Bryce.
  • images that lack one or more of the process colors. Sometimes images are created that use for instance only the magenta and black plate. If such an image is compressed using JPEG compression, you may see artefacts show up on the cyan and yellow plate.
Фрактальный алгоритм Идея метода Фрактальная архивация основана на том, что мы представляем изображение в более компактной форме — с помощью коэффициентов системы итерируемых функций (Iterated Function System — далее по тексту как IFS). Прежде, чем рассматривать сам процесс архивации, разберем, как IFS строит изображение, т.е. процесс декомпрессии. Строго говоря, IFS представляет собой набор трехмерных аффинных преобразований, в нашем случае переводящих одно изображение в другое. Преобразованию подвергаются точки в трехмерном пространстве (х_координата, у_координата, яркость). Наиболее наглядно этот процесс продемонстрировал Барнсли в своей книге “Fractal Image Compression”. Там введено понятие Фотокопировальной Машины, состоящей из экрана, на котором изображена исходная картинка, и системы линз, проецирующих изображение на другой экран:
  • Линзы могут проецировать часть изображения произвольной формы в любое другое место нового изображения.
  • Области, в которые проецируются изображения, не пересекаются.
  • Линза может менять яркость и уменьшать контрастность.
  • Линза может зеркально отражать и поворачивать свой фрагмент изображения.
  • Линза должна масштабировать (уменьшать)свой фрагмент изображения.
Расставляя линзы и меняя их характеристики, мы можем управлять получаемым изображением. Одна итерация работы Машины заключается в том, что по исходному изображению с помощью проектирования строится новое, после чего новое берется в качестве исходного. Утверждается, что в процессе итераций мы получим изображение, которое перестанет изменяться. Оно будет зависеть только от расположения и характеристик линз, и не будет зависеть от исходной картинки. Это изображение называется “ неподвижной точкой ” или аттрактором данной IFS. Соответствующая теория гарантирует наличие ровно одной неподвижной точки для каждой IFS. Поскольку отображение линз является сжимающим, каждая линза в явном виде задает самоподобные области в нашем изображении. Благодаря самоподобию мы получаем сложную структуру изображения при любом увеличении. Таким образом, интуитивно понятно, что система итерируемых функций задает фрактал (нестрого — самоподобный математический объект). Наиболее известны два изображения, полученных с помощью IFS: “треугольник Серпинского” и “папоротник Барнсли”. “Треугольник Серпинского” задается тремя, а “папоротник Барнсли” четырьмя аффинными преобразованиями (или, в нашей терминологии, “линзами”). Каждое преобразование кодируется буквально считанными байтами, в то время как изображение, построенное с их помощью, может занимать и несколько мегабайт.

=>

В худшем случае, если не будет применяться оптимизирующий алгоритм, потребуется перебор и сравнение всех возможных фрагментов изображения разного размера. Даже для небольших изображений при учете дискретности мы получим астрономическое число перебираемых вариантов. Причем, даже резкое сужение классов преобразований, например, за счет масштабирования только в определенное количество раз, не дает заметного выигрыша во времени. Кроме того, при этом теряется качество изображения. Подавляющее большинство исследований в области фрактальной компрессии сейчас направлены на уменьшение времени архивации, необходимого для получения качественного изображения. Далее приводятся основные определения и теоремы, на которых базируется фрактальная компрессия. Этот материал более детально и с доказательствами рассматривается в [3] и в [4]. Определение. Преобразование , представимое в виде где a, b, c, d, e, f действительные числа и называется двумерным аффинным преобразованием. Определение. Преобразование , представимое в виде где a, b, c, d, e, f, p, q, r, s, t, u действительные числа и называется трехмерным аффинным преобразованием. Определение. Пусть — преобразование в пространстве Х. Точка такая, что называется неподвижной точкой (аттрактором) преобразования. Определение. Преобразование в метрическом пространстве (Х, d) называется сжимающим, если существует число s: , такое, что Замечание: Формально мы можем использовать любое сжимающее отображение при фрактальной компрессии, но реально используются лишь трехмерные аффинные преобразования с достаточно сильными ограничениями на коэффициенты. Теорема. (О сжимающем преобразовании) Пусть в полном метрическом пространстве (Х, d). Тогда существует в точности одна неподвижная точка этого преобразования, и для любой точки последовательность сходится к . Более общая формулировка этой теоремы гарантирует нам сходимость. Определение.Изображением называется функция S, определенная на единичном квадрате и принимающая значения от 0 до 1 или Пусть трехмерное аффинное преобразование , записано в виде и определено на компактном подмножестве декартова квадрата [0..1]x[0..1]. Тогда оно переведет часть поверхности S в область , расположенную со сдвигом (e,f) и поворотом, заданным матрицей . При этом, если интерпретировать значение S как яркость соответствующих точек, она уменьшится в p раз (преобразование обязано быть сжимающим) и изменится на сдвиг q. Определение. Конечная совокупность W сжимающих трехмерных аффинных преобразований , определенных на областях , таких, что и , называется системой итерируемых функций ( IFS). Системе итерируемых функций однозначно сопоставляется неподвижная точка — изображение. Таким образом, процесс компрессии заключается в поиске коэффициентов системы, а процесс декомпрессии — в проведении итераций системы до стабилизации полученного изображения (неподвижной точки IFS). На практике бывает достаточно 7-16 итераций. Области в дальнейшем будут именоваться ранговыми, а области доменными. Построение алгоритма Как уже стало очевидным из изложенного выше, основной задачей при компрессии фрактальным алгоритмом является нахождение соответствующих аффинных преобразований. В самом общем случае мы можем переводить любые по размеру и форме области изображения, однако в этом случае получается астрономическое число перебираемых вариантов разных фрагментов, которое невозможно обработать на текущий момент даже на суперкомпьютере. В учебном варианте алгоритма, изложенном далее, сделаны следующие ограничения на области:
  1. Все области являются квадратами со сторонами, параллельными сторонам изображения. Это ограничение достаточно жесткое. Фактически мы собираемся аппроксимировать все многообразие геометрических фигур лишь квадратами.
  2. При переводе доменной области в ранговую уменьшение размеров производится ровно в два раза. Это существенно упрощает как компрессор, так и декомпрессор, т.к. задача масштабирования небольших областей является нетривиальной.
  3. Все доменные блоки — квадраты и имеют фиксированный размер. Изображение равномерной сеткой разбивается на набор доменных блоков.
  4. Доменные области берутся “через точку” и по Х, и по Y, что сразу уменьшает перебор в 4 раза.
  5. При переводе доменной области в ранговую поворот куба возможен только на 00, 900, 1800 или 2700. Также допускается зеркальное отражение. Общее число возможных преобразований (считая пустое) — 8.
  6. Масштабирование (сжатие) по вертикали (яркости) осуществляется в фиксированное число раз — в 0,75.
Эти ограничения позволяют:
  1. Построить алгоритм, для которого требуется сравнительно малое число операций даже на достаточно больших изображениях.
  2. Очень компактно представить данные для записи в файл. Нам требуется на каждое аффинное преобразование в IFS:
  • два числа для того, чтобы задать смещение доменного блока. Если мы ограничим входные изображения размером 512х512, то достаточно будет по 8 бит на каждое число.
  • три бита для того, чтобы задать преобразование симметрии при переводе доменного блока в ранговый.
  • 7-9 бит для того, чтобы задать сдвиг по яркости при переводе.
Информацию о размере блоков можно хранить в заголовке файла. Таким образом, мы затратили менее 4 байт на одно аффинное преобразование. В зависимости от того, каков размер блока, можно высчитать, сколько блоков будет в изображении. Таким образом, мы можем получить оценку степени компрессии. Например, для файла в градациях серого 256 цветов 512х512 пикселов при размере блока 8 пикселов аффинных преобразований будет 4096 (512/8x512/8). На каждое потребуется 3.5 байта. Следовательно, если исходный файл занимал 262144 (512х512) байт (без учета заголовка), то файл с коэффициентами будет занимать 14336 байт. Коэффициент архивации — 18 раз. При этом мы не учитываем, что файл с коэффициентами тоже может обладать избыточностью и архивироваться методом архивации без потерь, например LZW. Отрицательные стороны предложенных ограничений:
  1. Поскольку все области являются квадратами, невозможно воспользоваться подобием объектов, по форме далеких от квадратов (которые встречаются в реальных изображениях достаточно часто.)
  2. Аналогично мы не сможем воспользоваться подобием объектов в изображении, коэффициент подобия между которыми сильно отличается от 2.
  3. Алгоритм не сможет воспользоваться подобием объектов в изображении, угол между которыми не кратен 900.
Такова плата за скорость компрессиии за простоту упаковки коэффициентов в файл. Характеристики фрактального алгоритма: Коэффициенты компрессии: 2-2000 (Задается пользователем). Класс изображений: Полноцветные 24 битные изображения или изображения в градациях серого без резких переходов цветов (фотографии). Желательно, чтобы области большей значимости (для восприятия) были более контрастными и резкими, а области меньшей значимости — неконтрастными и размытыми. Симметричность: 100-100000 Характерные особенности: Может свободно масштабировать изображение при разархивации, увеличивая его в 2-4 раза без появления “лестничного эффекта”. При увеличении степени компрессии появляется “блочный” эффект на границах блоков в изображении.
Рекурсивный (волновой) алгоритм Английское название рекурсивного сжатия — wavelet. На русский язык оно переводится как волновое сжатие, и как сжатие с использованием всплесков. Этот вид архивации известен довольно давно и напрямую исходит из идеи использования когерентности областей. Ориентирован алгоритм на цветные и черно-белые изображения с плавными переходами. Идеален для картинок типа рентгеновских снимков. Коэффициент сжатия задается и варьируется в пределах 5-100. При попытке задать больший коэффициент на резких границах, особенно проходящих по диагонали, проявляется “лестничный эффект” — ступеньки разной яркости размером в несколько пикселов. Идея алгоритма заключается в том, что мы сохраняем в файл разницу — число между средними значениями соседних блоков в изображении, которая обычно принимает значения, близкие к 0. Так два числа a 2 i и a 2 i+1 всегда можно представить в виде b1i =(a 2 i + a 2 i+1 )/2 и b2i =(a 2 i - a 2 i+1 )/2. Аналогично последовательность ai может быть попарно переведена в последовательность b1,2i. Разберем конкретный пример: пусть мы сжимаем строку из 8 значений яркости пикселов (ai): (220, 211, 212, 218, 217, 214, 210, 202). Мы получим следующие последовательности b1i, и b2i: (215.5, 215, 215.5, 206) и (4.5, -3, 1.5, 4). Заметим, что значения b2i достаточно близки к 0. Повторим операцию, рассматривая b1i как ai. Данное действие выполняется как бы рекурсивно, откуда и название алгоритма. Мы получим из (215.5, 215, 215.5, 206): (215.25, 210.75) (0.25, 4.75). Полученные коэффициенты, округлив до целых и сжав, например, с помощью алгоритма Хаффмана с фиксированными таблицами, мы можем поместить в файл. Заметим, что мы применяли наше преобразование к цепочке только два раза. Реально мы можем позволить себе применение wavelet- преобразования 4-6 раз. Более того, дополнительное сжатие можно получить, используя таблицы алгоритма Хаффмана с неравномерным шагом (т.е. нам придется сохранять код Хаффмана для ближайшего в таблице значения). Эти приемы позволяют достичь заметных коэффициентов сжатия. Упражнение: Мы восстановили из файла цепочку (215, 211) (0, 5) (5, -3, 2, 4) (см. пример). Постройте строку из восьми значений яркости пикселов, которую воссоздаст алгоритм волнового сжатия. Алгоритм для двумерных данных реализуется аналогично. Если у нас есть квадрат из 4 точек с яркостями a2i,2j, a2i+1, 2j, a2i, 2j+1, и a2i+1, 2j+1, то
Исходное   B1 B2
изображение   B3 B4


Используя эти формулы, мы для изображения 512х512 пикселов получим после первого преобразования 4 матрицы размером 256х256 элементов:

--

В первой, как легко догадаться, будет храниться уменьшенная копия изображения. Во второй — усредненные разности пар значений пикселов по горизонтали. В третьей — усредненные разности пар значений пикселов по вертикали. В четвертой — усредненные разности значений пикселов по диагонали. По аналогии с двумерным случаем мы можем повторить наше преобразование и получить вместо первой матрицы 4 матрицы размером 128х128. Повторив наше преобразование в третий раз, мы получим в итоге: 4 матрицы 64х64, 3 матрицы 128х128 и 3 матрицы 256х256. На практике при записи в файл, значениями, получаемыми в последней строке (), обычно пренебрегают (сразу получая выигрыш примерно на треть размера файла — 1- 1/4 - 1/16 - 1/64...). К достоинствам этого алгоритма можно отнести то, что он очень легко позволяет реализовать возможность постепенного “прояв–ления” изображения при передаче изображения по сети. Кроме того, поскольку в начале изображения мы фактически храним его уменьшенную копию, упрощается показ “огрубленного” изображения по заголовку. В отличие от JPEG и фрактального алгоритма данный метод не оперирует блоками, например, 8х8 пикселов. Точнее, мы оперируем блоками 2х2, 4х4, 8х8 и т.д. Однако за счет того, что коэффициенты для этих блоков мы сохраняем независимо, мы можем достаточно легко избежать дробления изображения на “мозаичные” квадраты. Характеристики волнового алгоритма: Коэффициенты компрессии: 2-200 (Задается пользователем). Класс изображений:Как у фрактального и JPEG. Симметричность: ~1.5 Характерные особенности: Кроме того, при высокой степени сжатия изображение распадается на отдельные блоки.

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: