Нейронные сети
Figure - Ozone concentrations (ppbv) simulated by a regional photochemical model as a function of NOx and hydrocarbon emissions. The thick line separates the NOx-limited (top left) and hydrocarbon-limited (bottom right) regimes.
Развитие искусственных нейронных сетей вдохновляется биологией.
То есть, рассматривая сетевые конфигурации и алгоритмы, исследователи делают это, используя термины характерные для описания организации мозговой деятельности. Но на этом аналогия, пожалуй, заканчивается. Наши знания о работе мозга столь ограничены, что мало бы нашлось ориентиров для тех, кто стал бы ему подражать. Поэтому разработчикам сетей приходится выходить за пределы современных биологических знаний в поисках структур, способных выполнять полезные функции.
Начнем с рассмотрения биологического прототипа - нейрона. Нейрон является нервной клеткой биологической системы. Он состоит из тела и отростков, соединяющих его с внешним миром (рис. 1.1).

Отростки, по которым нейрон получает возбуждение, называются дендритами.
Отросток, по которому нейрон передает возбуждение, называется аксоном, причем аксон у каждого нейрона один.
Дендриты и аксон имеют довольно сложную ветвистую структуру.
Место соединения аксона нейрона - источника возбуждения с дендритом называется синапсом.
Основная функция нейрона заключается в передаче возбуждения с дендритов на аксон. Но сигналы, поступающие с различных дендритов, могут оказывать различное влияние на сигнал в аксоне. Нейрон выдаст сигнал, если суммарное возбуждение превысит некоторое пороговое значение, которое в общем случае изменяется в некоторых пределах. В противном случае на аксон сигнал выдан не будет: нейрон не ответит на возбуждение. У этой основной схемы много усложнений и исключений, тем не менее, большинство искусственных нейронных сетей моделируют лишь эти простые свойства.






