Медицина. Благодаря применению технологии рекомбинантных ДНК были достигнуты крупные успехи в медицине

Благодаря применению технологии рекомбинантных ДНК были достигнуты крупные успехи в медицине. Разработаны эффективные методы промышленного производства интерферона человека (гены человека клонированы в микроорганизмах). Помимо гена интерферона были клонированы гены инсулина и гормона ростачеловека. В целях крупномасштабного производства были клонированы гены многих других белков человека и животных, необратимые для диагностики и лечения.

Большое значение имеет и разработка методов производства моноклональных антител. Моноклональные антитела используются в наборах для проведения радиоиммунологического анализа (РИА), диагностики, иммунодиагностики и терапии.

Многообразны связи биотехнологии с медициной в производстве антибиотиков. Антибиотики – это специфические продукты жизнедеятельности определенных групп микроорганизмов, обладающие высокой физиологической активностью и подавляющие развитие патогенных микроорганизмов. Они избирательно задерживают их рост или полностью подавляют развитие. Важнейшими из них являются пенициллин (продуценты гриба рода Penicillium); стрептомицин (продуценты актиномицеты рода Streptomyces); тетрациклин (продуценты актиномицеты рода Streptomyces) и др.

Постоянно осуществляется поиск новых антибиотиков, что в значительной степени связано с тем, что они могут вызывать аллергические реакции, и выработкой у патогенных микроорганизмов устойчивости к применяемым препаратам.

Биотехнология открывает медицине новые пути получения ценных гормональных препаратов. Особенно большие достижения произошли в направлении синтеза пептидных гормонов. Раньше гормоны получали из тканей и органов животных и человека (кровь доноров, органы и ткани). Требовалось много материала для получения небольшого количества гормонального продукта. Так, человеческий гормон роста (соматотропин) получали из гипофиза человека, а каждый гипофиз содержит не более 4 мл гормона.

В тоже время для лечения одного ребенка, страдающего карликовостью, требуется 7 мл гормона в неделю, а курс лечения может быть до нескольких лет.

С помощью генной инженерии, используя штамм Escherichia coli в настоящее время получают до 100 мл гормона роста на 1 л среды культивирования. Кроме того, гормон саматотропин способствует заживлению ран и ожогов, а наряду с кальцитонином (гормон щитовидной железы) регулирует обмен Са 2+ в костной ткани.

Для лечения сахарного диабета применяется инсулин – пептидный гормон островков Лангерганса поджелудочной железы. Это заболевание вызвано дефицитом инсулина и проявляется повышением уровня глюкозы в крови. Ранее инсулин получали из поджелудочных желез домашних животных (крупный рогатый скот, свиньи). Однако препарат отличается от человеческого инсулина 1 – 3 аминокислотными заменами и мог вызывать у человека аллергические реакции.

С помощью генной инженерии стало возможным получать инсулин для человека с невысокой себестоимостью и высокой эффективностью терапевтического действия.

На повестке дня вопрос о промышленном синтезе гормонов нервной системы энкефалинов. Эти гормоны снимают болевые ощущения, создают хорошее настроение, повышают работоспособность, улучшают память, концентрируют внимание, регулируют режим сна.

Значительный вклад биотехнология вносит в промышленное производство пептидных гормонов и стероидов. Методы микробиологической трансформации позволили резко сократить число этапов химического синтеза кортизона – гормона надпочечников, применяемого для лечения ревматоидного артрита. Имеются разработки по получению гормона щитовидной железы тироксина из микроводорослей.

Важное значение имеют технологические процессы по производству интерферонов. Интерфероны обладают антивирусной активностью. В настоящее время интерферон успешно получают с применением генноинженерных штаммов микроорганизмов, культивируемых клеток насекомых и млекопитающих. Интерфероны используются для лечения болезней, вызываемых вирусами герпеса, бешенства, гепатита, а также профилактики вирусных инфекций, особенно респираторных.

Большой интерес вызывает биотехнологическое производство инерлейкинов. Это сравнительно короткие (около 150 аминокислотных остатков) полипептиды, участвующие в организации иммунного ответа.

Важное значение в медицине играет вакцинация против гриппа, гепатитов, кори, острых респираторных болезней. Важным является вопрос изготовления вакцин. Вакцинация – один из основных способов борьбы с инфекционными заболеваниями. Путем поголовной вакцинации ликвидировано натуральная оспа, резко ограничена распространение бешенства, сибирской язвы, полиомиелита, желтой лихорадки и др.

Современные биотехнологические процессы предусматривают выпуск рекомбинантных вакцин и вакцин антигенов. Вакцины обоих типов основаны на генноинженерном подходе.

Для получения рекомбинантных вакцин обычно используют хорошо известный геном вируса коровьей оспы (осповакцины). В его ДНК встраивают чужеродные гены, кодирующие иммунногенные белки различных возбудителей (гриппа, гепатита, молярийного плазмодия и др.). Для получения рекомбинантных ДНК используют специальные векторы на основе плазмид с хорошо изученной последовательностью и рестрикционной картой. Появилась возможность создания поливалентных вакцинных препаратов на основе объединения участков ДНК различных патогенов под эгидой ДНК вируса осповакцины.

Современная биотехнология применяется в получении ферментов медицинского назначения. Их используют для растворения тромбов, лечения наследственных заболеваний. Яркий пример спасения жизни больных с тромбозом конечностей, легких, сосудов сердца при помощи тромболитических ферментов (стрептокиназы и урокиназы).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: