Электродвижущая сила электромагнитной индукции

Причиной возникновения тока в замкнутом контуре является электродвижущая сила, возбуждаемая сторонней силой. Если контур 2 на рис. 8.1 разомкнуть, то гальванометр покажет отсутствие индукционного тока. Однако э.д.с. электромагнитной индукции в контуре 2 при изменении магнитного потока через его сечение все равно возникнет. Опыты Фарадея позволили ему сформулировать закон электромагнитной индукции:

При всяком изменении магнитного потока , охватывающего контур, в нем возникает э.д.с. электромагнитной индукции, величина которой пропорциональна скорости изменения магнитного потока:

(8.1)

где знак минус соответствует правилу Ленца: э.д.с. индукции противодействует причине, вызвавшей эту причине.

Пусть постоянное магнитное поле создано в лабораторной системе отсчета. Пусть движение контура с постоянной скоростью приводит к изменению магнитного потока через сечение, охватываемое контуром. Наблюдатель в лабораторной системе отсчета видит причину возникновении сторонней силы в действии силы Лоренца на носители тока в контуре (см. рис. 8.2).

Рис. 8.2

Выразим э.д.с. электромагнитной индукции в контуре :

где - напряженность поля сторонних сил,

и - сила Лоренца, действующая на свободный заряд в элементе контура , который движется со скоростью .

Отсюда получим выражение э.д.с. электромагнитной индукции для наблюдателя в лабораторной системе отсчета:

(8.2)

Учтем векторное тождество:

и перепишем выражение (8.2):

(8.3)

Вектор смещения элемента контура за время равен . Изменение вектора площади сечения контура за время составит . Изменение магнитного потока через сечение, охватываемое контуром, за время составит

. (8.4)

Сопоставляя (8.3) и (8.4), получим формулу закона электромагнитной индукции:

(8.1)

Перейдем в систему отсчета, движущуюся вместе с контуром . В этой системе контур неподвижен, и объяснить возникновение э.д.с. электромагнитной индукции за счет действия силы Лоренца нельзя. Наблюдатель в подвижной системе отсчета связывает возникновение э.д.с. с появлением вихревого электрического поля при переходе из лабораторной системы в подвижную систему отсчета.

Вывод: Электрическое поле, как и магнитное, проявляет относительные свойства (изменяется) при переходе из одной системы отсчета в другую.

Напряженность вихревого электрического поля служит напряженностью поля сторонних сил в подвижной системе отсчета: . Э.д.с. как скалярная величина, не зависит от выбора системы отсчета. В подвижной системе

Сопоставляя последнее выражение с (8.2) и учитывая произвольность выбора контура , получим выражение для напряженности вихревого электрического поля через индукцию магнитного поля и скорость движения контура:

(8.5)

При протекании индукционного тока в контуре выделяется джоулево тепло. Эта энергия равна работе механических сил, приводящих контур в движение.

Баллистический метод измерения индукции магнитного поля разработал А.Г. Столетов (изучить самостоятельно).

Пусть контур образован не одним витком, а образует соленоид из витков. Так как витки соединены последовательно, то э.д.с., возбуждаемые в отдельных витках, складываются. Полная э.д.с. индукции в катушке

(8.6)

где - потокосцепление или полный магнитный поток катушки,

и - магнитный поток через - ый виток; если все эти потоки одинаковы, то

Индукционные токи могут возбуждаться не только в проволочных контурах, но и в сплошных массивных проводниках. Тогда их называют индукционными токами или токами Фуко. Эти токи могут достигать больших значений, так как сплошные проводники имеют небольшое сопротивление. В соответствии с правилом Ленца индукционные токи противодействуют причине, их вызвавшей. Поэтому при движении массивных проводников в сильном магнитном поле эти проводники испытывают сильное торможение. Торможение вызывается силой, действующей на токи Фуко со стороны магнитного поля.

В технике токи Фуко могут оказывать полезное действие. Например, в измерительных приборах на оси стрелки закрепляется металлическая пластина, которая вводится в зазор между полюсами магнита. При движении пластины в ней возникают индукционные токи, вызывающие торможение всей системы. Торможение не препятствует приходу стрелки в равновесие.

Тепловое действие токов Фуко используют в индукционных печах. Печь образуется катушкой, которая питается высокочастотным током большой силы. Можно плавить металлы и получать химически чистые образцы.

До появления ферритов приходилось изготавливать ферромагнитные сердечники электромагнитов из пластин. Это позволяло уменьшить интенсивность токов Фуко в сердечниках и, соответственно, потери энергии на нагрев сердечников при их перемагничивании.

По мере повышения частоты переменный ток все больше концентрируется в поверхностном слое проводника (скин-эффект). Переменные токи Фуко направлены так, что ослабляют ток внутри провода, но усиливают у поверхности. Поверхностный эффект, приводящий к вытеснению тока в поверхностный слой проводника, позволяет применять полые трубчатые проводники в высокочастотных цепях.

Еще одним техническим применением явления электромагнитной индукции служат генераторы переменного тока (изучить самостоятельно).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: