Пример доказательства свойства программы

Завершимость выполнения программы.

Одно из свойств программы, которое нас может интересовать, чтобы избежать возможных ошибок в ПС, является ее завершимость, т.е. отсутствие в ней зацикливания при тех или иных исходных данных. В рассмотренных нами структурированных программах источником зацикливания может быть только конструкция повторения. Поэтому для доказательства завершимости программы достаточно уметь доказывать завершимость оператора цикла. Для этого полезна следующая

Теорема 9.7. Пусть F - целочисленная функция, зависящая от состояния информационной среды и удовлетворяющая следующим условиям:

(1) если для данного состояния информационной среды истинен предикат Q, то ее значение положительно;

(2) она убывает при изменении состояния информационной среды в результате выполнения оператора S.

Тогда выполнение оператора цикла

ПОКА Q ДЕЛАТЬ S ВСЕ ПОКА
завершается.

Доказательство. Пусть is - состояние информационной среды перед выполнением оператора цикла и пусть F(is)=k. Если предикат Q(is) ложен, то выполнение оператора цикла завершается. Если же Q(is) истинен, то по условию теоремы k>0. В этом случае будет выполняться оператор S один или более раз. После каждого выполнения оператора S по условию теоремы значение функции F уменьшается, а так как перед выполнением оператора S предикат Q должен быть истинен (по семантике оператора цикла), то значение функции F в этот момент должно быть положительно (по условию теоремы). Поэтому в силу целочисленности функции F оператор S в этом циклене может выполняться более k раз. Теорема доказана.

Например, для рассмотренного выше примера оператора циклаусловиям теоремы 9.7 удовлетворяет функция f(n, m)= n-m. Так как перед выполнением оператора цикла m=1, то тело этого цикла будет выполняться (n-1) раз, т.е. этот оператор цикла завершается.

На основании доказанных правил верификации программ можно доказывать свойства программ, состоящих из операторов присваивания и пустых операторов и использующих три основные композиции структурного программирования. Для этого анализируя структуру программы и используя заданные ее пред- и постусловия необходимо на каждом шаге анализа применять подходящее правило верификации. В случае применения композиции повторения потребуется подобрать подходящий инвариант цикла.

В качестве примера докажем свойство (9.4). Это доказательство будет состоять из следующих шагов.

(Шаг 1). n>0 => (n>0, p - любое, m - любое).

(Шаг 2). Имеет место

{n>0, p - любое, m - любое} p:=1 {n>0, p=1, m - любое}.

-- По теореме 9.2.

(Шаг 3). Имеет место

{n>0, p=1, m - любое} m:=1 {n>0, p=1, m=1}.

-- По теореме 9.2.

(Шаг 4). Имеет место

{n>0, p - любое, m - любое} p:=1; m:=1 {n>0, p=1, m=1}.

-- По теореме 9.3 в силу результатов шагов 2 и 3.

Докажем, что предикат p=m! является инвариантом цикла, т.е. {p=m!} m:=m+1; p:=p*m {p=m!}.

(Шаг 5). Имеет место {p=m!} m:=m+1 {p=(m-1)!}.

-- По теореме 9.2, если представить предусловие в виде {p=((m+1)-1)!}.

(Шаг 6). Имеет место {p=(m-1)!} p:=p*m {p=m!}.

-- По теореме 9.2, если представить предусловие в виде {p*m=m!}.

(Шаг 7). Имеет место инвариант цикл

{p=m!} m:=m+1; p:=p*m {p=m!}.

-- По теореме 9.3 в силу результатов шагов 5 и 6.

(Шаг 8). Имеет место

{n>0, p=1, m=1} ПОКА m /= n ДЕЛАТЬ

m:= m+1; p:= p*m

ВСЕ ПОКА {p= n!}.

-- По теореме 9.6 в силу результата шага 7 и имея в виду, что (n>0, p=1, m= 1)=>p=m!; (p=m!, m=n)=>p=n!.

(Шаг 9). Имеет место

{n>0, p - любое, m - любое} p:=1; m:=1;

ПОКА m /= n ДЕЛАТЬ

m:= m+1; p:= p*m

ВСЕ ПОКА {p= n!}.

-- По теореме 9.3 в силу результатов шагов 3 и 8.

(Шаг 10). Имеет место свойство (9.4) по теореме 9.5 в силу результатов шагов 1 и 9.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: