Ультразвуковая дефектоскопия

Феррозонды

Индукционные преобразователи

В индукционных преобразователях реализуется принцип электромагнитной индукции, т. е. наведение э.д.с. в катушке при внесении ее в магнитное поле. Это наиболее простой тип преобразователя энергии магнитного поля в электрический сигнал, однако он отличается высокой чувствительностью, надежностью и удобством эксплуатации. В конструктивном исполнении преобразователи этого типа представляют собой многовитковые катушки различной формы. Они могут быть проходными, например для контроля цилиндрических изделий, и накладными, для сканирования поверхности контролируемых изделий.

Индукционные преобразователи применяются, например, в установках - скоростного контроля труб и рельсов, уложенных в пути.

Феррозонды — магниточувствительные преобразователи, в которых реализуется процесс взаимодействия двух полей: внешнего измеряемого и собственного поля возбуждения.

Простейший ферроэлемент состоит из сердечника, выполненного из магнитомягкого материала, на котором размещены две обмотки: возбуждения и измерительная. Обмотка возбуждения питается переменным током такой амплитуды, чтобы доводить сердечник до состояния, близкого к насыщению.

Применение звука для контроля детали—один из наиболее давно применяемых способов контроля без разрушения. Несколько тысяч лет назад, продавая свои изделия, гончар ударял слегка о сосуд и по звуку демонстрировал покупателю отсутствие в нем трещин. Сосуд с трещиной издает дребезжащий звук. Обходчик, ударяя молотком по ободу колеса железнодорожного вагона, также по звуку судит об отсутствии в нем трещин.

Однако человеческое ухо воспринимает механические колебания, имеющие частоту лишь от 16 до 20000 гц (т. е. от 16 до 20000 колебаний в секунду). Эти колебания называют звуковыми. Колебания с частотой менее 16 гц называют инфразвуковыми, а более 20000 гц— ультразвуковыми.

Ультразвуковая дефектоскопия основана на свойстве ультразвуковых волн распространяться в однородном твердом теле на большие расстояния в виде направленного пучка и отражаться от границ между двумя различными веществами, имеющими разные акустические свойства. Ультразвуковые колебания, распространяясь в металлических деталях, отражаются от несплошностей (трещин, раковин и т. п.).

Если к поверхности детали приложить так называемую излучающую искательную головку, то часть ультразвука войдет в деталь и будет распространяться в ней. При встрече ультразвукового луча с несплошностью, часть ультразвуковой энергии отразится от нее. Отраженный ультразвук будет распространяться в сторону излучения, а за дефектом образуется ультразвуковая тень.

На практике наиболее часто встречаются несплошности меньше 6 и больше 0,6 мм. Для их выявления необходимо применять ультразвуковые колебания с частотой более 500000 гц (или 0,5 Мгц). Наиболее часто пользуются частотами 1—2,5 Мгц (1 мегагерц=106 гц).

В зависимости от физической сущности, различают теневые методы, эхо-методы и резонансные методы кон-тропя. В теневых методах при помощи излучающей искательной головки 2 (фиг. 20,а) ультразвук, полученный за счет преобразования высокочастотного тока, поступившего «из генератора высокой частоты 1, вводят в деталь 3. С противоположной стороны помещают устройство для приема ультразвука—приемную искательную головку 4. Принятую искателем ультразвуковую энергию преобразуют в электрическую, усиливают в усилителе 5 и затем измеряют вольтметром 6. Вольтметр позволяет судить об интенсивности ультразвука, поступающего в приемный искатель. Искатели перемещают вдоль и поперек детали, сохраняя их соосность. О наличии в детали нарушения сплошности (фиг. 20,6) судят по ослаблению интенсивности ультразвукового луча в дефектном месте, т. е. по ультразвуковой тени.

В отличие от теневых методов в эхо-методе излучающую и приемную искательные головки помещают с одной стороны, а о нарушениях сплошности судят по интенсивности отраженного сигнала, т. е. по ультразвуковому эхо.

Работа этих дефектоскопов основана на известном явлении—эхо. По звуковому эхо можно судить о наличии преграды, от которой отразился сигнал, и о расстоянии до нее. Для этого нужно заметить время прохождения звуковой волны туда и обратно. Умножив это время на скорость звука в воздухе, равную примерно 335 м/сек, легко подсчитать длину пути, проходимого волной, половина которого и есть расстояние до препятствия.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: