double arrow

Основные определения теории графов


История и применение

Глава 3. Введение в теорию графов

Начало теории графов как математической дисциплины было положено Эйлером в его знаменитом рассуждении о кенигсбергских мостах (1736 г.) Однако, она не находила применения в течение почти 100 лет. Интерес к теории возник благодаря исследованиям электрических сетей, моделей кристаллов и структур молекул. В 1847 г. Кирхгофом была разработана теория деревьев, которая послужила важным аналитическим средством для исследования электрических цепей. Законы Кирхгофа для напряжений и токов в цепи полностью определяются контурами и сечениями графа этой цепи и не зависят от природы используемых элементов. Поэтому тщательное изучение понятий контура, сечения и дерева графа дало толчок многим открытиям в теории цепей и, кроме того, внесло большой вклад в теорию графов.

Характерно то, что в терминах графов формулируются многие понятия и задачи прикладных областей: теории игр и программирования, теории передачи сообщений, транспортных сетей, электрических цепей, организационной структуры общества, а также биологии и психологии. В области вычислительной техники теория графов занимает особое место. Она предоставляет большие возможности для построения эффективных алгоритмов и анализа их сложности, дает готовые решения многим задачам вычислительной техники, например, для задачи оптимизации компиляторов. В то же время исследования в каждой из прикладных областей приводят к развитию самой теории графов.




Граф – математический объект, описываемый двумя множествами: G=( V, E ), где V – так называемое множество вершин, а Eмножество дуг.

Элементами множества дуг являются упорядоченные пары вершин, т.е. E={ ( a, b): aÎV, bÎV }, т.о. множество Е является подмножеством декартова произведения V´V. Порядок вершин в парах может и не учитываться, тогда элементы множества Е называют ребрами, а сам граф – неориентированным графом, в противном случае – ориентированным или Орграфом. В некоторых случаях рассматриваются так называемые смешанные графы, в них множество Е состоит из элементов обоих видов: дуг и ребер.

Обозначим вершины v1, v2, v3, ¼, а ребра e1, e2, e3, ¼. Вершины vi и vj, определяющие ребро ek, называются концевыми вершинами ребра ek=(vi, vj), а в случае орграфа – началом и концом дуги ek соответственно. Говорят также, что ребро ek (дуга) инцидентно вершинам vi, vj или, что вершины vi, vj инцидентны ребру (дуге) ek. Такие вершины называют смежными. Ребра называют смежными в случае, когда они имеют общую концевую вершину. Например, ek=(vi, vj) и em=(vi, vl) – смежные ребра.

В множестве ребер графа допускается более, чем одно ребро с одинаковыми концевыми вершинами. Такие ребра называются параллельными или кратными. Например: ek=(vi, vj) и em=(vi, vj) – кратные ребра.



Если обе концевые вершины ребра совпадают, то такое ребро называется петлей. Например: ek=(vi, vi) – петля.

Граф без петель и параллельных ребер называется простым, в противном случае – мультиграфом.

Граф, не имеющий ребер, называется пустым, а не имеющий вершин (а значит и ребер) – нуль‑графом.

Простой граф, у которого любая пара вершин смежна, называется полным.

Количество вершин в графе называется порядком графа.

Степенью или валентностью вершины называется число инцидентных ей ребер. Будем обозначать степень вершины vi – deg(vi). Вершина нулевой степени называется изолированной. Вершина степени 1 называется висячей, а ребро, инцидентное ей, называется висячим ребром. Заметим, что петля добавляет двойку к степени вершины.

§ 3.3. Способы задания графов

Рассмотрим три способа задания графов: графический, аналитический и матричный.

1) Графический способ.

Вершины изображают точками на плоскости, а ребра – линиями, соединяющими соответствующие точки. Для изображения дуги используется линия со стрелкой, указывающей направление от начала к концу дуги.

На рисунке 12 изображен смешанный граф с вершинами v1, v2,¼, v6, ребрами e1, e2, e3, e5 и дугой e4. Смежные вершины v1, v2, инциденты ребру e1. Вершины v1, v3, инциденты параллельным ребрам e2 и e3. Вершине v4 инциденты петля e5 и дуга e4, причем v4 является началом дуги e4, а v5 – концом этой дуги. Степень вершины v1 равна 3, вершины v2 – 1, вершины v3 – 2, вершины v4 – 3, вершины v5 – 1, вершины v6 – 0. Таким образом, вершины v2 и v5 – висячие, а вершина v6 – изолированная. В случае дуги e4 точнее было бы говорить о полустепенях исхода и захода вершин v4 и v5, а именно: полустепень исхода вершины v4 равна 3, вершины v5 – 0, полустепень захода вершины v4 равна 2, вершины v5 – 1.



2) Аналитический способ.

Граф задают перечислением элементов множества вершин и множества ребер. Для графа, изображенного на рисунке 12, эти множества: V={v1, v2, v3, v4, v5, v6} и Е={e1, e2, e3, e4, e5}, где e1=(v1, v2), e2=(v1, v3), e3=(v1, v3), e4=(v4, v5), и e5=(v4, v4).

3) Матричный способ.

Имеется несколько вариантов задать граф матрицей. Наиболее употребимыми являются матрица инциденций и матрица смежности.

а) Матрица инциденций – это прямоугольная матрица, число строк которой равно числу вершин, а число столбцов – числу дуг (ребер) графа. Элементы этой матрицы определяются следующим образом:

Таким образом, для графа на рисунке 12 матрица инциденций такова:

    e1 e2 e3 e4 e5
v1
v2
I= v3
v4
v5 -1
v6

По этой матрице легко судить о наличии в графе параллельных ребер (два одинаковых столбца), петли (одна единица в столбце), дуги (значения разных знаков в столбце), изолированной вершины (нулевая строка), висячих вершин (одно ненулевое значение в строке).

б) Матрица смежности вершин – это квадратная матрица, размер которой определяется числом вершин в графе. Элементы этой матрицы определяются так: . Если в графе имеются параллельные ребра, то соответствующий элемент матрицы смежности полагают равным числу этих ребер. Так матрица смежности для графа на рисунке 12 такова:

    v1 v2 v3 v4 v5 v6
v1
v2
S= v3
v4
v5
v6

По виду этой матрицы также несложно судить о наличии в графе кратных ребер, дуг, петель, висячих и изолированных вершин.

Понятно, что любая квадратная матрица с целыми неотрицательными коэффициентами может быть интерпретирована как граф, а значит, изучение графов можно свести к изучению матриц такого типа. Вообще изучение графов можно расширить, рассматривая матрицы не только с целыми, но и с неотрицательными вещественными элементами. Такие матрицы, например, могут соответствовать графу, представляющему схему дорог, в котором расстояние между вершинами vi и vj равно длине соответствующей дороги. Подобные матрицы называют обычно матрицами весов.

Представление графов матрицами очень удобно при решении задач на компьютере.







Сейчас читают про: