Синхронизационные захваты

Изолированность пользователей

В многопользовательских системах с одной базой данных одновременно могут работать несколько пользователей или прикладных программ. Предельной задачей системы является обеспечение изолированности пользователей, т.е. создание достоверной и надежной иллюзии того, что каждый из пользователей работает с БД в одиночку.

В связи со свойством сохранения целостности БД транзакции являются подходящими единицами изолированности пользователей. Действительно, если с каждым сеансом работы с базой данных ассоциируется транзакция, то каждый пользователь начинает работу с согласованным состоянием базы данных, т.е. с таким состоянием, в котором база данных могла бы находиться, даже если бы пользователь работал с ней в одиночку.

Понятно, что для того, чтобы добиться изолированности транзакций, в СУБД должны использоваться какие-либо методы регулирования совместного выполнения транзакций.

План (способ) выполнения набора транзакций называется сериальным, если результат совместного выполнения транзакций эквивалентен результату некоторого последовательного выполнения этих же транзакций.

Сериализация транзакций – это механизм их выполнения по некоторому сериальному плану. Обеспечение такого механизма является основной функцией компонента СУБД, ответственного за управление транзакциями. Система, в которой поддерживается сериализация транзакций, обеспечивает реальную изолированность пользователей.

Основная реализационная проблема состоит в выборе метода сериализации набора транзакций, который не слишком ограничивал бы их параллельность. Тривиальным решением является действительно последовательное выполнение транзакций. Но существуют ситуации, в которых можно выполнять операторы разных транзакций в любом порядке с сохранением сериальности. Примерами могут служить только читающие транзакции, а также транзакции, не конфликтующие по объектам базы данных.

Существуют два базовых подхода к сериализации транзакций – основанный на синхронизационных захватах объектов базы данных и на использовании временных меток.

Наиболее распространенным в централизованных СУБД (включающих системы, основанные на архитектуре "клиент-сервер") является подход, основанный на соблюдении двухфазного протокола синхронизационных захватов объектов БД. В общих чертах протокол состоит в том, что перед выполнением любой операции в транзакции T над объектом базы данных r от имени транзакции T запрашивается синхронизационный захват объекта r в соответствующем режиме (в зависимости от вида операции).

Основными режимами синхронизационных захватов являются:

1. совместный режим – S (Shared), означающий разделяемый захват объекта и требуемый для выполнения операции чтения объекта;

2. монопольный режим – X (eXclusive), означающий монопольный захват объекта и требуемый для выполнения операций занесения, удаления и модификации.

Захваты объектов несколькими транзакциями по чтению совместимы, т.е. нескольким транзакциям допускается читать один и тот же объект, захват объекта одной транзакцией по чтению не совместим с захватом другой транзакцией того же объекта по записи, и захваты одного объекта разными транзакциями по записи не совместимы. Правила совместимости захватов одного объекта разными транзакциями изображены в табл.1:

Таблица 1 – Правила совместимости захватов

Состоянияобъекта X S
Захват не установлен да да
X нет нет
S нет да

В первом столбце приведены возможные состояния объекта с точки зрения синхронизационных захватов. Транзакция, запросившая синхронизационный захват объекта БД, уже захваченный другой транзакцией в несовместимом режиме, блокируется до тех пор, пока захват с этого объекта не будет снят.

При соблюдении двухфазного протокола синхронизационных захватов действительно обеспечивается сериализация транзакций на третьем уровне изолированности. Основная проблема состоит в том, что следует считать объектом для синхронизационного захвата?

В контексте реляционных баз данных возможны следующие альтернативы:

· файл - физический (с точки зрения базы данных) объект, область хранения нескольких отношений и, возможно, индексов;

· отношение - логический объект, соответствующий множеству кортежей данного отношения;

· страница данных - физический объект, хранящий кортежи одного или нескольких отношений, индексную или служебную информацию;

· кортеж - элементарный физический объект базы данных.

Чем крупнее объект синхронизационного захвата (неважно, какой природы этот объект – логический или физический), тем меньше синхронизационных захватов будет поддерживаться в системе, и на это, соответственно, будут тратиться меньшие накладные расходы. Но вся беда в том, что при использовании для захватов крупных объектов возрастает вероятность конфликтов транзакций и тем самым уменьшается допускаемая степень их параллельного выполнения.

В большинстве современных систем используются покортежные синхронизационные захваты.

Но если единицей захвата является кортеж, то какие синхронизационные захваты потребуются при выполнении таких операций как уничтожение отношения? Было бы довольно нелепо перед выполнением такой операции потребовать захвата всех существующих кортежей отношения. Кроме того, это не предотвратило бы возможности параллельной вставки в другой транзакции нового кортежа в уничтожаемое отношение.

Подобные рассуждения привели к разработки аппарата гранулированных синхронизационных захватов. При применении этого подхода синхронизационные захваты могут запрашиваться по отношению к объектам разного уровня: файлам, отношениям и кортежам. Требуемый уровень объекта определяется тем, какая операция выполняется (например, для выполнения операции уничтожения отношения объектом синхронизационного захвата должно быть все отношение, а для выполнения операции удаления кортежа – этот кортеж). Объект любого уровня может быть захвачен в режиме S или X.

Теперь введем наиболее важное отличие, на котором, собственно, держится соответствие захватов разного уровня. Это специальные протоколы гранулированных захватов и новые типы захватов: перед захватом объекта в режиме S или X соответствующий объект более верхнего уровня должен быть захвачен в режиме IS, IX или SIX:

· IS (Intented for Shared lock) по отношению к некоторому составному объекту O означает намерение захватить некоторый входящий в O объект в совместном режиме. Например, при намерении читать кортежи из отношения R это отношение должно быть захвачено в режиме IS (а до этого в таком же режиме должен быть захвачен файл).

· IX (Intented for eXclusive lock) по отношению к некоторому составному объекту O означает намерение захватить некоторый входящий в O объект в монопольном режиме. Например, при намерении удалять кортежи из отношения R это отношение должно быть захвачено в режиме IX (а до этого в таком же режиме должен быть захвачен файл).

· SIX (Shared, Intented for eXclusive lock) по отношению к некоторому составному объекту O означает совместный захват всего этого объекта с намерением впоследствии захватывать какие-либо входящие в него объекты в монопольном режиме. Например, если выполняется длинная операция просмотра отношения с возможностью удаления некоторых просматриваемых кортежей, то экономичнее всего захватить это отношение в режиме SIX (а до этого захватить файл в режиме IS).

Возможные ситуации описаны в табл. 2:

Таблица 2 – Совместимость захватов

  X S IX IS SIX
Захват не установлен да да да да да
X нет нет нет нет нет
S нет да нет да нет
IX нет нет да да нет
IS нет да да да да
SIX нет нет нет да нет

Одним из наиболее чувствительных недостатков метода сериализации транзакций на основе синхронизационных захватов является возможность возникновение тупиков (deadlocks) между транзакциями. Тупики возможны при применении любого из рассмотренных вариантов.

Вот простой пример возникновения тупика между транзакциями T1 и T2:

Транзакции T1 и T2 установили монопольные захваты объектов r1 и r2 соответственно, после чего T1 требуется совместный захват r2, а T2 - совместный захват r1. Ни одна из транзакций не может продолжаться, следовательно, монопольные захваты не будут сняты, а совместные – не будут удовлетворены.

Поскольку тупики возможны, и никакого естественного выхода из тупиковой ситуации не существует, то эти ситуации необходимо обнаруживать и искусственно устранять.

Основой обнаружения тупиковых ситуаций является построение (или постоянное поддержание) графа ожидания транзакций. Граф ожидания транзакций – это ориентированный двудольный граф, в котором существует два типа вершин - вершины, соответствующие транзакциям, и вершины, соответствующие объектам захвата. В этом графе существует дуга, ведущая из вершины-транзакции к вершине-объекту, если для этой транзакции существует удовлетворенный захват объекта. В графе существует дуга из вершины-объекта к вершине-транзакции, если транзакция ожидает удовлетворения захвата объекта.

Легко показать, что в системе существует ситуация тупика, если в графе ожидания транзакций имеется хотя бы один цикл. Для распознавания тупика периодически производится построение графа ожидания транзакций (как уже отмечалось, иногда граф ожидания поддерживается постоянно), и в этом графе ищутся циклы.

Если удалось найти цикл в графе ожидания транзакций – нужно каким-то образом обеспечить возможность продолжения работы хотя бы для части транзакций, попавших в тупик. Разрушение тупика начинается с выбора в цикле транзакций так называемой транзакции-жертвы, т.е. транзакции, которой решено пожертвовать, чтобы обеспечить возможность продолжения работы других транзакций. Критерием выбора является стоимость транзакции; жертвой выбирается самая дешевая транзакция. Стоимость транзакции определяется на основе многофакторной оценки, в которую с разными весами входят время выполнения, число накопленных захватов, приоритет и т.д.

После выбора транзакции-жертвы выполняется откат этой транзакции, который может носить полный или частичный характер. При этом, естественно, освобождаются захваты и может быть продолжено выполнение других транзакций.

Естественно, такое насильственное устранение тупиковых ситуаций является нарушением принципа изолированности пользователей, которого невозможно избежать.

Чтобы минимизировать число конфликтов между транзакциями, в некоторых СУБД (например, в Oracle) используется следующее развитие подхода. Монопольный захват объекта блокирует только изменяющие транзакции. После выполнения операции модификации предыдущая версия объекта остается доступной для чтения в других транзакциях. Кратковременная блокировка чтения требуется только на период фиксации изменяющей транзакции, когда обновленные объекты становятся текущими.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: