Характеристические функции и дифференциальные соотношения взаимности термодинамики

Характеристической функцией называется функция состояния ТС, позволяющая при соответствующем выборе независимых переменных (при определенных условиях сопряжения ТС с окружающей средой) выражать через свои производные наиболее просто и в явном виде термодинамические параметры, характеризующие свойства термодинамической системы. Построение термодинамического анализа на этих свойствах характеристических функций составляет основу метода характеристических функций.

Рассмотрим простую ( =0), закрытую () термодинамическую систему. Тогда для обратимых процессов объединенные выражения 1-го и 2-го законов термодинамики будут иметь вид:

, (5)

(6)

(7)

. (8)

Каждое из уравнений (5)-(8) связывает пять переменных величин, которые зависят лишь от состояния ТС и не зависят от пути процесса. Функции U, H, F, G являются характеристическими только при определенном выборе независимых переменных: . Полные дифференциалы функций U, H, F, G имеют вид:

(9)

(10)

, (11)

. (12)

Линейным дифференциальным соотношениям (9)-(12) тождественны объединенные выражения 1-го и 2-го законов термодинамики (5)-(8). Сопоставляя уравнения (5) и (9) можно наиболее просто выразить неизвестные параметры – температуру Т и давление р с помощью частных производных внутренней энергии по энтропии S и по объему V:

, . (13)

По аналогии выразим неизвестные параметры в выражениях (6)-(8) с помощью частных производных (10)-(12) для функций H, F и G:

, , (14)

, , (15)

, . (16)

Согласно свойству полного дифференциала вторая смешанная производная от функции U не зависит от порядка дифференцирования, т.е.:

, или (17)

.

По аналогии для функций H, F, G получим:

, для Н, (18)

, для F, (19)

, для G. (20)

Уравнения (17)-(20) называются дифференциальными соотношениями взаимности или уравнениями Максвелла. Они в такой же степени достоверны, как и законы термодинамики, следствием которых они являются. Уравнения (17)-(20) широко используются при термодинамическом анализе. При анализе также широко используется уравнение связи, которое выводится следующим образом. Если функция - функция состояния, то ее полный дифференциал равен:

.

Для = const . Тогда получим:

.

После деления на имеем:

. (21)

Связи частных производных одного термодинамического параметра по другому (21) справедливы при определенных условиях сопряжения ТС с окружающей средой.

Схема чередования термодинамических параметров в уравнении связи (21) имеет вид:

т.е. функция → аргумент → фиксированный параметр: (), (), ().


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: