Труба радиусом сечения
м толщиной
см загружена продольной растягивающей силой
кН, внутренним давлением
МПа и крутящим моментом
. Материал трубы – чугун с такими характеристиками:
МПа,
МПа,
. Нормативный коэффициент запаса прочности
.
Требуется:
1) найти напряжения на гранях элемента, выделенного из трубы;
2) найти главные напряжения и положения главных площадок;
3) проверить прочность и определить действительный коэффициент запаса прочности;
4) показать направление трещины, возникающей при повышении уровня напряженного состояния до критического.
В расчетно-графической работе студенту требуется, кроме того, вычислить напряжения по указанной наклонной площадке. Это задание выполняется так же, как в задаче № 7.
Решение
Начать решение задачи нужно с изображения трубы и действующих на нее сил. Рядом со стрелками указываются абсолютные значения сил. Знаки учитываются соответствующим направлением стрелок.
Проверим применимость к данной задаче формул для вычисления напряжений в тонкостенной трубе. Так как
, то труба является тонкостенной. Следовательно, вышеприведенные формулы применимы.
Нормальное напряжение от продольного растяжения силой 

положительно.
Нормальное напряжение, вызванное внутренним давлением
,
МПа
также положительно.
Касательное напряжение, вызванное моментом
, по модулю равно
.
Рис. 2.25. Напряженное
состояние точки трубы
|
Принимая во внимание направление крутящего момента (см. рис. 2.24) и учитывая правило знаков для касательного напряжения при плоском напряженном состоянии, получаем
.
Теперь изобразим найденное напряженное состояние точки трубы в виде плоского рисунка, учтя правила знаков для напряжений.
Для последующей проверки прочности вычислим главные напряжений:

Главные напряжения, пронумерованные должным образом,
,
,
.
Тангенс угла наклона главной площадки
.
Отсюда два главных угла таковы:
.
Соответствие угла
главным площадкам (1 или 2) устанавливается так же, как в задаче № 7. Главные направления 1 и 2 показаны на рис. 2.26. Проверку всех вычисленных значений можно выполнить, построив круг напряжений Мора. Построение описано при решении задачи № 7.
Материал является хрупким (чугун), поэтому прочность проверяем по второй теории прочности или по теории прочности Мора.
Согласно второй теории прочности

,
значит, прочность обеспечена.
Вычислим действительный коэффициент запаса прочности:
Рис. 2.26. Вероятное
направление трещин
|
.
Вероятная плоскость отрыва (трещины) перпендикулярна первому главному направлению, то есть наклонена к продольной оси трубы под углом
. Она показана на рис. 2.26, где ось
– продольная ось трубы. Направление вероятной плоскости отрыва на рисунке привязано к оси конструкции, значит, может быть показано и на самой конструкции.
Согласно пятой теории прочности (теории Мора)
,
то есть прочность также обеспечена. Фактический коэффициент запаса прочности таков:
.
Рис. 2.25. Напряженное
состояние точки трубы
Рис. 2.26. Вероятное
направление трещин






