Формула Бернулли. Варианты 1-10 (N – номер варианта)

Варианты 1-10 (N – номер варианта)

В семье 6 детей. Вероятность рождения мальчика равна 0,51. Найти вероятность того, что среди этих детей:

N = 1) один мальчик;

N = 2) более одного мальчика;

N = 3) два мальчика;

N = 4) более двух мальчиков;

N = 5) не более двух мальчиков;

N = 6) три мальчика;

N = 7) более трех мальчиков;

N = 8) не более трех мальчиков;

N = 9) четыре мальчика;

N = 10) не более четырех мальчиков.

Варианты 11-20 (N – номер варианта)

Отрезок АВ разделен точкой С в отношении 3:1. На этот отрезок наудачу брошено шесть точек. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения. Найти вероятность того, что:

N = 11) одна точка окажется левее точки С;

N = 12) более одной точки окажется левее точки С;

N = 13) две точки окажется левее точки С;

N = 14) более двух точек окажется левее точки С;

N = 15) не более двух точек окажется левее точки С;

N = 16) три точки окажется левее точки С;

N = 17) более трех точек окажется левее точки С;

N = 18) не более трех точек окажется левее точки С;

N = 19) четыре точки окажется левее точки С;

N = 20) не более четырех точек окажется левее точки С.

Варианты 21-30 (N – номер варианта)

Монету бросают 6 раз. Найти вероятность того, что «герб» выпадет:

N = 21) один раз;

N = 22) более одного раза;

N = 23) два раза;

N = 24) более двух раз;

N = 25) не более двух раз;

N = 26) три раза;

N = 27) более трех раз;

N = 28) не более трех раз;

N = 29) четыре раза;

N = 30) не более четырех раз.

Локальная и интегральная теоремы Муавра-Лапласа. Формула Пуассона

Варианты 1-10 (N – номер варианта)

Найти вероятность того, что событие А наступит ровно (70 + N) раз в (250 + N) независимых испытаниях, если вероятность появления этого события в каждом испытании равна 0,2.

Варианты 11-20 (N – номер варианта)

Вероятность появления события А в каждом из (120 + N) независимых постоянна и равна 0,8. Найти вероятность того, что событие А появится не менее (70 + N) раз.

Варианты 21-30 (N – номер варианта)

Проведено (10 × N) независимых испытаний с вероятностью появления события А в каждом из них (N /1000). Найти вероятность того, что событие А появится точно 2 раза.

Дискретные случайные величины

В денежной лотерее выпущено 1000 билетов. Разыгрывается a 1 выигрышей на сумму p 1 тысяч рублей, a 2 выигрышей на сумму p 2 тысяч рублей и a 3 выигрышей на сумму p 3 тысяч рублей. Составить ряд распределения случайной величины Х – размер выигрыша по одному купленному билету; найти математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины; записать функцию распределения и построить ее график.

Варианты (N – номер варианта)

N a 1 p 1 a 2 p 2 a 3 p 3 N a 1 p 1 a 2 p 2 a 3 p 3
1.             2.            
3.             4.            
5.             6.            
7.             8.            
9.             10.            
11.             12.            
13.             14.            
15.             16.            
17.             18.            
19.             20.            
21.             22.            
23.             24.            
25.             26.            
27.             28.            
29.             30.            



double arrow
Сейчас читают про: