Система сигнализации ОКС № 7

В общем случае можно говорить о том, что благодаря внедрению общего канала сигнализации (ОКС) сеть связи становится более интеллектуальной. Создаются условия для оперативного управления сетью и адаптивной маршрутизации соединений. Следует отметить, что конфигурация сети ОКС не всегда повторяет конфигурацию самой сети связи. Это означает, что маршруты передачи пользовательской информации и информации сигнализации могут не совпадать. По своей сути сеть ОКС является вложенной пакетной сетью. Однако в терминологии ОКС пакет принято называть сигнальной единицей. Кроме того, вместо термина логического соединения, в ОКС используется термин - сигнальное соединение. В настоящее время в основном используется система сигнализации ОКС № 7, которая ориентирована на цифровую телефонную сеть. В качестве физического канала передачи используется цифровой канал со скоростью передачи 64 кбит/с. Сигнальная единица следует из пункта передачи SPА (Signalling Point) в пункт приема SPB и может проходить через один или несколько транзитных пунктов STP (Signalling Transfer Point).

Функционально модель ОКС имеет уровневую структуру. Учитывая, что ОКС разрабатывался значительно раньше модели взаимодействия открытых систем - ВОС (OSI - Open System Interconnection) [6], назначение уровней этих моделей полностью не совпадают. Остановимся на модели ОКС № 7 (рис. 6.1).

На четвертом уровне определены функции и процедуры для различных пользовательских частей. До настоящего времени существовали следующие пользовательские части:

телефонная пользовательская часть - TUP (Telephone User Part);

пользовательская часть передачи данных - DUP (Data User Part);

пользовательская часть цифровой сети интегрального обслуживания - ISUP (ISDN User Part);

прикладная часть техобслуживания и эксплуатации - OMAP (Operations and Maintenance Application Part).

Задачей пользовательской части является подготовка и обработка сообщений при обмене сигнальной информацией между узлами коммутации. В общем случае сообщение содержит код типа сообщения и параметры. Так например, в процессе проключения пользовательского канала, используются сообщения:

IAM - начальное адресное (00000001);

АСМ - окончания приема номера (00000110);

ANM - ответа вызываемого абонента (00001001);

и т.д.

Сформировав сообщение, пользовательская часть передает его части передачи сообщения - MTP (Message Transfer Part).

В функции третьего уровня МТР входит маршрутизация сигнальных единиц в сети ОКС, для чего на третьем уровне добавляются поля LABEL и SIO (рис. 6.2). Поле SIO (Service Information Octet) длиной байт является индикатором службы, т.е. пользовательской части ОКС № 7, которой адресована сигнальная информация. Поле LABEL содержит: код пункта назначения - DPС (Destination Point Code); код пункта отправления - OPC (Originating Point Code); код пользовательского канала CTC (Circuit Identity Code), для управления которым передается сигнальная единица, а также указание выбора сигнального звена, если между узлами коммутации имеется несколько сигнальных каналов. Усложнение систем и сетей связи усложняет и процессы сигнализации. Иногда возникает необходимость обмена сигнальной информацией через значительное число транзитных узлов коммутации, что предъявляет более жесткие требования к задачам маршрутизации и приводит к дополнительной загрузке пользовательской части транзитных узлов. В этом случае для обмена сигнальной информацией целесообразно устанавливать сквозные сигнальные соединения. Поэтому для расширения возможностей МТР и устранения отличий с моделью ВОС, в уровень 3 дополнительно включены функции установления и разрушения сигнальных соединений. Эти функции получили название части управления сигнальными соединениями - SCCP (Signaling Connection Control Part), а МТР, включая SCCP, - части сетевых услуг NSP (Network Service Part), как это показано на рис.6.1. Часть управления сигнальными соединениями поддерживает два вида сигнальных соединений: виртуальное и дейтаграмное. В обоих случаях речь идет о логических соединениях, а не о физических. Виртуальное сигнальное соединение устанавливается под управлением соответствующей пользовательской части, при этом определяется маршрут следования всех сигнальных единиц. Для установления сигнального соединения вызывающая SCCPA передает в сеть ОКС команду CR, которая содержит данные о протокольном классе, адрес вызываемой SCCPB и метку соединения (номер логического канала). В команде CR может содержаться и адрес SCCPA. В ответной команде СС содержится другая метка соединения (номер логического канала). Когда исходящая сторона получила команду СС, сигнальное соединение считается установленным. При обмене сигнальными единицами, SCCPA и SCCPB оперируют метками соединения. Разрушение сигнального соединения осуществляется по команде RLSD.

При дейтаграмном сигнальном соединении используется команда UDT. В этом случае не производится обмен метками соединений. Для маршрутизации используются коды пунктов отправления ОРС и назначения DPC, и каждая сигнальная единица маршрутизируется независимо.

Второй уровень МТР включает функции и процедуры управления передачей сигнальных единиц на одном звене сети ОКС. Эти функции обеспечивают достоверный обмен информацией между двумя сигнальными точками. Каждая сигнальная единица на втором уровне (рис. 6.2) обрамляется флагами F (01111110). Для обеспечения прозрачности цифрового потока в процессе передачи сигнальной единицы, между флагами после пяти следующих подряд “1” автоматически добавляется “0”, который при приеме удаляется (бит стаффинг). Детектирование возможных ошибок при передаче реализуется за счет 16 контрольных бит СК. Каждая сигнальная единица, передаваемая и ожидаемая, имеет звеньевые номера FSN и BSN, а также соответствующие биты индикации FIB и BIB. Кроме того, в поле LI указывается суммарная длина полей SIF, LABEL и SIO. При обнаружении ошибки в принятой сигнальной единице, она перезапрашивается путем передачи номера последней правильно принятой сигнальной единицы в поле BSN с инвертированным значением BIB. Значение FIB остается прежним. Передающая сторона в этом случае возвращается к передаче сигнальных единиц, начиная с номера, указанного в поле BSN, увеличенного на единицу. При этом инвертируется значение FIB.

На первом уровне определены все физические, электрические и функциональные характеристики звена ОКС, в которое включен канал обмена сигнальными сообщениями в оба направления одновременно. В звено сигнализации может быть включено и цифровое коммутационное поле, если сигнальный канал коммутируется. Характеристиками звена сети ОКС на первом уровне являются: скорость передачи, способ синхронизации, линейное кодирование, вероятность ошибки в процессе передачи и т.д.

Несмотря на мощные возможности рассмотренной системы сигнализации ОКС № 7, в таком виде она не может удовлетворить потребности сети GSM, так как рассчитана на то, что интеллект по обслуживанию вызовов сконцентрирован в узлах коммутации, и ее протоколы связаны с информационными каналами для передачи пользовательской информации. В сети GSM интеллект процесса обслуживания вызовов распределен между функциональными единицами и необходимо наличие нормативных положений относительно протоколов обмена инструкциями и данными между распределенными внутрисетевыми ресурсами (прикладными процессами). Для этого в рамках системы сигнализации ОКС № 7 введены транзакционные возможности - ТС (Transaction Capability) независимо от применений, которые добавляются к службам сетевого уровня модели ВОС (в нашем случае MTP плюс SCCP). Транзакционные возможности составляются из прикладной части транзакционных возможностей - TCAP (Transaction Capability Application Part) на 7 уровне модели ВОС и поддерживающих стандартных протоколов уровней 4 - 6.

Для поддержки сигнализации в сети GSM между ее функциональными единицами разработаны дополнительно к существующим две разновидности прикладных частей ОКС № 7: MAP (Mobile Application Part) и BSSAP (BSS Application Part). Использование возможностей пользовательских частей ОКС № 7 для сигнализации в сети GSM представлено на рис. 6.3. Прикладная часть МАР реализована в УКПС, АРПС, ВРПС и РИО. Она обеспечивает их взаимодействие между собой и состоит из ряда функциональных элементов ASE (Application System Elements), каждый из которых выполняет одну из задач по обмену сигнальной информацией (рис. 6.4). Учитывая, с одной стороны, функциональное построение сети GSM, а с другой стороны, особенности процесса обслуживания вызовов при организации взаимодействия УКПС, АРПС, ВРПС, РИО между собой наряду с NSP (MTP плюс SCCP) используется TCAP. При этом МАР может осуществлять управление несколькими диалогами одновременно между функциональными единицами сети.

Прикладная часть BSSAP обеспечивает взаимодействие УКПС и БС. При этом BSSAP для транспортировки сообщений использует только услуги NSP (MTP плюс SCCP). На нее возлагается управление обменом двумя группами сообщений: сквозными сообщениями через БС между УКПС и ПС; сообщениями между УКПС и БС. Это привело к тому, что прикладная часть BSSAP разделена на две функциональные части: прикладная часть сквозной передачи сообщений - DTAP (Direct Transfer Application Part); прикладная часть управления БС - BSSMAP (BSS Management Application Part). Сообщения DTAP и BSSMAP включаются в формат SCCP как поле данных, структура которого приведена на рис. 6.5. При этом: 7-й бит дискриминатора указывает прозрачно ли сигнальное соединение (“1” - да, “0” - нет), т.е. какой функциональной части BSSAP адресовано сообщение; 6-й и 7-й биты идентификатора канала - DLCI (Data Link Connection Identification) используются только функциональной частью DTAP для определения типа логического канала управления между ПБС и ПС (“00” - индивидуальный сигнальный D или быстрый ассоциированный А¢, “01” - медленный ассоциированный А); биты 0,1,2 идентификатора канала заключают в себе SAPI (Service Access Point Indicator), определяющей являются ли передаваемые данные сообщением сигнализации, техобслуживания или данными, адресованными второму уровню протокола LAP D.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: