Кодирование информации. При передаче цифровой информации с помощью цифровых сигналов применяется цифровое кодирование, управляющее последовательностью прямоугольных импульсов в

При передаче цифровой информации с помощью цифровых сигналов применяется цифровое кодирование, управляющее последовательностью прямоугольных импульсов в соответствии с последовательностью передаваемых данных. При цифровом кодировании применяют либо потенциальные, либо импульсные коды. При потенциальном кодировании информативным является уровень сигнала. При импульсном кодировании используются либо перепады уровня (транзитивное кодирование), либо полярность отдельных импульсов (униполярное, полярное, биполярное кодирование). В отдельную группу импульсных кодов выделяют двухфазные коды, при которых в каждом битовом интервале обязательно присутствует переход из одного состояния в другое (такие коды позволяют выделять синхросигнал из последовательности состояний линии, то есть являются самосинхронизирующимися).

Наиболее распространены следующие коды:

· NRZ (Non-Return to Zero – без возврата к нулю) – потенциальный код, состояние которого прямо или инверсно отражает значение бита данных

· дифференциальный NRZ – состояние меняется в начале битового интервала для “1” и не меняется при “0”

· NRZI (Non-Return to Zero Inverted – без возврата к нулю с инверсией) – состояние меняется в начале битового интервала при передаче “0” и не меняется при передаче “1”. Используется в FDDI, 100BaseFX.

· RZ (Return to Zero – с возвратом к нулю) – биполярный импульсный самосинхронизирующийся код, представляющий “1” и “0” импульсами противоположной полярности, длящимися половину такта (вторую половину такта состояния устанавливается в нулевое); всего используется три состояния

· AMI (Bipolar Alternate Mark Inversion – биполярное кодирование с альтернативной инверсией) – используется три состояния: 0, + и –, для кодирования логического нуля используется состояние 0, а логическая единица кодируется по очереди состояниями + и –. Используется в ISDN, DSx.

· Манчестерское кодирование (manchester encoding) – двухфазное полярное самосинхронизирующееся кодирование, логическая единица кодируется перепадом потенциала в середине такта от низкого уровня к высокому, логический ноль – обратным перепадом (если необходимо представить два одинаковых значения подряд, в начале такта происходит дополнительный служебный перепад потенциала). Используется в Ethernet.

· Дифференциальное манчестерское кодирование (differential manchester encoding) – двухфазное полярное самосинхронизирующееся кодирование, логический ноль кодируется наличием перепада потенциала в начале такта, а логическая единица – отсутствием перепада; в середине такта перепад есть всегда (для синхронизации). В Token Ring применяется модификация этого метода, кроме “0” и “1”, использующая служебные биты “J” и “K”, не имеющие перепада в середине такта (“J” не имеет перепада в начале такта, “К” – имеет).

· MLT-3 – трехуровневое кодирование со скремблированием без самосинхронизации, логический ноль кодируется сохранением состояния, а логическая единица кодируется по очереди следующими состояниями: +V, 0, -V, 0, +V и т.д. Используется в FDDI и 100BaseTX.

· PAM5 (Pulse Amplitude Modulation) – пятиуровневое биполярное кодирование, при котором каждая пара бит данных представляется одним из пяти уровней потенциала. Применяется в 1000BaseT.

· 2B1Q (2 Binary 1 Quarternary) – пара бит данных представляется одним четвертичным символом, т.е. одним из четырех уровней потенциала. Применяется в ISDN.

                   
                   
NRZ                  
                   
Diferential NRZ                  
                   
NRZI                  
                   
RZ                          
                           
                   
AMI                  
                 
                   
Manchester                                    
                   
Differential Manchester                                    
                   
MLT-3                  
                 
                   
2B1Q                  
                 
                 
                   
                                                           

Рисунок 5.1 — Способы цифрового кодирования данных


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: