Тангенциальная составляющая ускорения 33 страница

Рассмотрим дифракционную решетку. На рис. 262 для наглядности показаны только две соседние щели MN и CD. Если ширина каждой щели равна а, а ширина непрозрачных участков между щелями b, то величина d=a+b называется постоянной (периодом) дифракционной решетки. Пусть плоская монохроматическая волна падает нормально к плоскости решетки. Так как щели находятся друг от друга на одинаковых расстояниях, то разности хода лучей, идущих от двух соседних щелей, будут для данного направления j одинаковы в пределах всей дифракционной решетки:

(180.1)

Очевидно, что в тех направлениях, в которых ни одна из щелей не распространяет свет, он не будет распространяться и при двух щелях, т. е. прежние (главные) миниму­мы интенсивности будут наблюдаться в направлениях, определяемых условием (179.2):

(180.2)

Кроме того, вследствие взаимной интерференции световых лучей, посылаемых двумя щелями, в некоторых направлениях они будут гасить друг друга, т. е. возникнут дополнительные минимумы. Очевидно, что эти дополнительные минимумы будут на­блюдаться в тех направлениях, которым соответствует разность хода лучей l/2, 3l/2,..., посылаемых, например, от крайних левых точек М и С обеих щелей. Таким образом, с учетом (180.1) условие дополнительных минимумов:

Наоборот, действие одной щели будет усиливать действие другой, если

(180.3)

т. е. выражение (180.3) задает условие главных максимумов.

Таким образом, полная дифракционная картина, для двух щелей определяется из условий:

т. е. между двумя главными максимумами располагается один дополнительный мини­мум. Аналогично можно показать, что между каждыми двумя главными максимумами при трех щелях располагается два дополнительных минимума, при четырех ще­лях — три и т. д.

Если дифракционная решетка состоит из N щелей, то условием главных минимумов является условие (180.2), условием главных максимумов — условие (180.3), а условием дополнительных минимумов

(180.4)

где т' может принимать все целочисленные значения, кроме 0, N, 2 N,.... т. е. кроме тех, при которых условие (180.4) переходит в (180.3). Следовательно, в случае N щелей между двумя главными максимумами располагается N– 1 дополнительных минимумов, разделенных вторичными максимумами, создающими весьма слабый фон.

Чем больше щелей N, тем большее количество световой энергии пройдет через решетку, тем больше минимумов образуется между соседними главными максимума­ми, тем, следовательно, более интенсивными и более острыми будут максимумы. На рис. 263 качественно представлена дифракционная картина от восьми щелей. Так как модуль sin j не может быть больше единицы, то из (180.3) следует, что число главных максимумов

т. е. определяется отношением периода решетки к длине волны.

Положение главных максимумов зависит от длины волны l (см. (180.3)). Поэтому при пропускании через решетку белого света все максимумы, кроме центрального (т =0), разложатся в спектр, фиолетовая область которого будет обращена к центру дифракционной картины, красная — наружу. Это свойство дифракционной решетки используется для исследования спектрального состава света (определения длин волн и интенсивностей всех монохроматических компонентов), т. е. дифракционная решетка может быть использована как спектральный прибор.

Дифракционные решетки, используемые в различных областях спектра, отличаются размерами, формой, материалом поверхности, профилем штрихов и их частотой (от 6000 до 0,25 штрих/мм, что позволяет перекрывать область спектра от ультрафи­олетовой его части до инфракрасной). Например, ступенчатый профиль решетки позволяет концентрировать основную часть падающей энергии в направлении одного определенного ненулевого порядка.

§ 181. Пространственная решетка. Рассеяние света

Дифракция света наблюдается не только на плоской одномерной решетке (штрихи нанесены перпендикулярно некоторой прямой линии), но и на двумерной решетке (штрихи нанесены во взаимно перпендикулярных направлениях в одной и той же плоскости). Большой интерес представляет также дифракция на пространственных (трехмерных) решетках — пространственных образованиях, в которых элементы струк­туры подобны по форме, имеют геометрически правильное и периодически повторя­ющееся расположение, а также постоянные (периоды) решеток, соизмеримые с длиной волны электромагнитного излучения. Иными словами, подобные пространственные образования должны иметь периодичность по трем не лежащим в одной плоскости направлениям. В качестве пространственных дифракционных решеток могут быть использованы кристаллические тела, так как в них неоднородности (атомы, молекулы, ионы) регулярно повторяются в трех направлениях.

Дифракция света может происходить также в так называемых мутных сре­дах — средах с явно выраженными оптическими неоднородностями. К мутным средам относятся аэрозоли (облака, дым, туман), эмульсия, коллоидные растворы и т. д., т. е. такие среды, в которых взвешено множество очень мелких частиц инородных веществ. Свет, проходя через мутную среду, дифрагирует от беспорядоч­но расположенных микронеоднородностей, давая равномерное распределение интенсивностей по всем направлениям, не создавая какой-либо определенной дифракцион­ной картины. Происходит так называемое рассеяние света в мутной среде. Это явление можно наблюдать, например, когда узкий пучок солнечных лучей, проходя через запыленный воздух, рассеивается на пылинках и тем самым становится видимым.

Рассеяние света (как правило, слабое) наблюдается также и в чистых средах, не содержащих посторонних частиц. Л. И. Мандельштам объяснил рассеяние света в средах нарушением их оптической однородности, при котором показатель преломления среды не постоянен, а меняется от точки к точке. В дальнейшем польский физик М. Смолуховский (1872—1917) указал, что причиной рассеяния света могут быть также флуктуации плотности, возникающие в процессе хаотического (теплового) движения молекул среды. Рассеяние света в чистых средах, обусловленное флуктуациями плот­ности, анизотропии или концентрации, называется молекулярным рассеянием.

Молекулярным рассеянием объясняется, например, голубой цвет неба. Согласно закону Д. Рэлея, интенсивность рассеянного света обратно пропорциональна четвер­той степени длины волны (I ~l–4), поэтому голубые и синие лучи рассеиваются сильнее, чем желтые и красные, обусловливая тем самым голубой цвет неба. По этой же причине свет, прошедший через значительную толщу атмосферы, оказывается обогащенным более длинноволновой частью спектра (сине-фиолетовая часть спектра полностью рассеивается) и поэтому при закате и восходе Солнце кажется красным. Флуктуации плотности и интенсивность рассеяния света возрастают с увеличением температуры. Поэтому в ясный летний день цвет неба является более насыщенным по сравнению с таким же зимним днем.

§ 182. Дифракция на пространственной решетке. Формула Вульфа — Брэггов

Для наблюдения дифракционной картины необходимо, чтобы постоянная решетки была того же порядка, что и длина волны падающего излучения (см. (180.3)). Кристал­лы, являясь трехмерными пространственными решетками (см. § 181), имеют постоян­ную порядка 10–10 м и, следовательно, непригодны для наблюдения дифракции в видимом свете (l» 5×10–7 м). Эти факты позволили немецкому физику М. Лауэ (1879—1960) прийти к выводу, что в качестве естественных дифракционных решеток для рентгеновского излучения можно использовать кристаллы, поскольку расстояние между атомами в кристаллах одного порядка с l рентгеновского излучения (»10–12¸10–8 м).

Простой метод расчета дифракции рентгеновского излучения от кристаллической решетки предложен независимо друг от друга Г. В. Вульфом (1863—1925) и английс­кими физиками Г. и Л. Брэггами (отец (1862—1942) и сын (1890—1971)). Они пред­положили, что дифракция рентгеновского излучения является результатом его отраже­ния от системы параллельных кристаллографических плоскостей (плоскостей, в кото­рых лежат узлы (атомы) кристаллической решетки).

Представим кристаллы в виде совокупности параллельных кристаллографических плоскостей (рис. 264), отстоящих друг от друга на расстоянии d. Пучок параллельных монохроматических рентгеновских лучей (1, 2) падает под углом скольжения q (уголмежду направлением падающих лучей и кристаллографической плоскостью) и возбуж­дает атомы кристаллической решетки, которые становятся источниками когерентных вторичных волн 1 ' и 2 ', интерферирующих между собой, подобно вторичным волнам, от щелей дифракционной решетки. Максимумы интенсивности (дифракционные мак­симумы) наблюдаются в тех направлениях, в которых все отраженные атомными плоскостями волны будут находиться в одинаковой фазе. Эти направления удовлет­воряют формуле Вульфа — Брэггов

(182.1)

т. е. при разности хода между двумя лучами, отраженными от соседних кристалло­графических плоскостей, кратной целому числу длин волн А, наблюдается дифракцион­ный максимум.

При произвольном направлении падения монохроматического рентгеновского излучения на кристалл дифракция не возникает. Чтобы ее наблюдать, надо, повора­чивая кристалл, найти угол скольжения. Дифракционная картина может быть получена и при произвольном положении кристалла, для чего нужно пользоваться непрерывным рентгеновским спектром, испускаемым рентгеновской трубкой. Тогда для таких условий опыта всегда найдутся длины волн l, удовлетворяющие условию (182.1).

Формула Вульфа — Брэггов используется при решении двух важных задач:

1. Наблюдая дифракцию рентгеновских лучей известной длины волны на кристал­лической структуре неизвестного строения и измеряя q и т, можно найти межплоскост­ное расстояние (d), т.е. определить структуру вещества. Этот метод лежит в основе рентгеноструктурного анализа. Формула Вульфа — Брэггов остается справедливой и при дифракции электронов и нейтронов. Методы исследования структуры вещества, основанные на дифракции электронов и нейтронов, называются соответственно электронографией и нейтронографией.

2. Наблюдая дифракцию рентгеновских лучей неизвестной длины волны на кри­сталлической структуре при известном d и измеряя q и т, можно найти длину волны падающего рентгеновского излучения. Этот метод лежит в основе рентгеновской спек­троскопии.

§ 183. Разрешающая способность оптических приборов

Используя даже идеальную оптическую систему (такую, для которой отсутствуют дефекты и аберрации), невозможно получить стигматическое изображение точечного источника, что объясняется волновой природой света. Изображение любой светящейся точки в монохроматическом свете представляет собой дифракционную картину, т. е. точечный источник отображается в виде центрального светлого пятна, окруженного чередующимися темными и светлыми кольцами.

Согласно критерию Рэлея, изображения двух близлежащих одинаковых точечных источников или двух близлежащих спектральных линий с равными интенсивностями и одинаковыми симметричными контурами разрешимы (разделены для восприятия), если центральный максимум дифракционной картины от одного источника (линии) совпадает с первым минимумом дифракционной картины от другого (рис. 265, а). При выполнении критерия Рэлея интенсивность «провала» между максимумами составляет 80% интенсивности в максимуме, что является достаточным для разрешения линий l1 и l2. Если критерий Рэлея нарушен, то наблюдается одна линия (рис. 265, б).

1. Разрешающая способность объектива. Если на объектив падает свет от двух удаленных точечных источников S 1 и S 2 (например, звезд) с некоторым угловым расстоянием dy, то вследствие дифракции световых волн на краях диафрагмы, ограни­чивающей объектив, в его фокальной плоскости вместо двух точек наблюдаются максимумы, окруженные чередующимися темными и светлыми кольцами (рис. 266).Можно доказать, что две близлежащие звезды, наблюдаемые в объективе в монохро­матическом свете, разрешимы, если угловое расстояние между ними

(183.1)

где l — длина волны света, D — диаметр объектива.

Разрешающей способностью (разрешающей силой) объектива называется величина

где dy — наименьшее угловое расстояние между двумя точками, при котором они еще оптическим прибором разрешаются.

Согласно критерию Рэлея, изображения двух одинаковых точек разрешимы, когда центральный максимум дифракционной картины для одной точки совпадает с первым минимумом дифракционной картины для другой (рис. 266). Из рисунка следует, что при выполнении критерия Рэлея угловое расстояние dy между точками должно быть равно j, т. е. с учетом (183.1)

Следовательно, разрешающая способность объектива

(183.2)

т. е. зависит от его диаметра и длины волны света.

Из формулы (183.2) видно, что для увеличения разрешающей способности оптичес­ких приборов нужно либо увеличить диаметр объектива, либо уменьшить длину волны. Поэтому для наблюдения более мелких деталей предмета используют ультрафиолето­вое излучение, а полученное изображение в данном случае наблюдается с помощью флуоресцирующего экрана либо фиксируется на фотопластинке. Еще большую раз­решающую способность можно было бы получить с помощью рентгеновского излуче­ния, но оно обладает большой проникающей способностью и проходит через вещество не преломляясь; следовательно, в данном случае невозможно создать преломляющие линзы. Потоки электронов (при определенных энергиях) обладают примерно такой же длиной волны, как и рентгеновское излучение. Поэтому электронный микроскоп имеет очень высокую разрешающую способность (см. § 169).

Разрешающей способностью спектрального прибора называют безразмерную ве­личину

(183.3)

где dl — абсолютное значение минимальной разности длин волн двух соседних спект­ральных линий, при которой эти линии регистрируются раздельно.

2. Разрешающая способность дифракционной решетки. Пусть максимум т- го поряд­ка для длины волны l2 наблюдается под углом j, т. е., согласно (180.3), d sin j=m l2. При переходе от максимума к соседнему минимуму разность хода меняется на l/N (см. (180.4)), где N — число щелей решетки. Следовательно,минимум l1, наблюдаемый под углом j min, удовлетворяет условию d sin j min= m l1+l1/ N. По критерию Рэлея, j =j min, т. е. m l2 =m l1+l1 /N или l2 / (l2 l1) =mN. Tax как l1 и l2 близки между собой, т. е. l2–l1= dl то, согласно (183.3),

Таким образом, разрешающая способность дифракционной решетки пропорциональна порядку m спектра и числу N щелей, т. е. при заданном числе щелей увеличивается при переходе к большим значениям порядка m интерференции. Современные дифракцион­ные решетки обладают довольно высокой разрешающей способностью (до 2×105).

§ 184. Понятие о голографии

Голография (от греч. «полная запись») — особый способ записи и последующего восстановления волнового поля, основанный на регистрации интерференционной кар­тины. Она обязана своим возникновением законам волновой оптики — законам ин­терференции и дифракции.

Этот принципиально новый способ фиксирования и воспроизведения пространст­венного изображения предметов изобретен английским физиком Д. Габором (1900—1979) в 1947 г. (Нобелевская премия 1971 г.). Экспериментальное воплощение и дальнейшая разработка этого способа (Ю. Н. Денисюком в 1962 г. и американскими физиками Э. Лейтом и Ю. Упатниексом в 1963 г.) стали возможными после появле­ния в 1960 г. источников света высокой степени когерентности — лазеров (см. § 233).

Рассмотрим элементарные основы принципа голографии, т.е. регистрации и вос­становления информации о предмете. Для регистрации и восстановления волны необ­ходимо уметь регистрировать и восстанавливать амплитуду и фазу идущей от пред­мета волны. В самом деле, согласно формуле (144.2), учитывая, что I ~ А 2, распределе­ние интенсивности в интерференционной картине определяется как амплитудой ин­терферирующих волн, так и разностью их фаз. Поэтому для регистрации как фазовой, так и амплитудной информации кроме волны, идущей от предмета (так называемой предметной волны), используют еще когерентную с ней волну, идущую от источника света (так называемую опорную волну). Идея голографирования состоит в том, что фотографируется распределение интенсивности в интерференционной картине, воз­никающей при суперпозиции волнового поля объекта и когерентной ему опорной волны известной фазы. Последующая дифракция света на зарегистрированном рас­пределении почернений в фотослое восстанавливает волновое поле объекта и допускает изучение этого поля при отсутствии объекта.

Практически эта идея может быть осуществлена с помощью принципиальной схемы, показанной на рис. 267, а. Лазерный пучок делится на две части, причем одна его часть отражается зеркалом на фотопластинку (опорная волна), а вторая попадает на фотопластинку, отразившись от предмета (предметная волна). Опорная и предмет­ная волны, являясь когерентными и накладываясь друг на друга, образуют на фотопла­стинке интерференционную картину. После проявления фотопластинки и получается голограмма — зарегистрированная на фотопластинке интерференционная картина, об­разованная при сложении опорной и предметной волн.

Для восстановления изображения (рис. 267, б) голограмма помещается в то же самое положение, где она находилась до регистрации. Ее освещают опорным пучком того же лазера (вторая часть лазерного пучка перекрывается диафрагмой). В резуль­тате дифракции света на интерференционной структуре голограммы восстанавливается копия предметной волны, образующая объемное (со всеми присущими предмету свойствами) мнимое изображение предмета, расположенное в том месте, где предмет находился при голографировании. Оно кажется настолько реальным, что его хочется потрогать. Кроме того, восстанавливается еще действительное изображение предмета, имеющее рельеф, обратный рельефу предмета, т. е. выпуклые места заменены вогну­тыми, и наоборот (если наблюдение ведется справа от голограммы).

Обычно пользуются мнимым голографическим изображением, которое по зритель­ному восприятию создает полную иллюзию существования реального предмета. Рас­сматривая из разных положений объемное изображение предмета, даваемое голограммой, можно увидеть более удаленные предметы, закрытые более близкими из них (заглянуть за ближние предметы). Это объясняется тем, что, перемещая голову в сто­рону, мы воспринимаем изображение, восстановленное от периферической части голог­раммы, на которую при экспонировании падали также и лучи, отраженные от скрытых предметов. Голограмму можно расколоть на несколько кусков. Но даже малая часть голограммы восстанавливает полное изображение. Однако уменьшение размеров голо­граммы приводит к ухудшению четкости получаемого изображения. Это объясняется тем, что голограмма для опорного пучка служит дифракционной решеткой, а при уменьшении числа штрихов дифракционной решетки (при уменьшении размеров голог­раммы) ее разрешающая способность уменьшается.

Методы голографии (запись голограммы в трехмерных средах, цветное и панорам­ное голографирование и т. д.) находят все большее развитие. Применения голографии разнообразны, но наиболее важными, приобретающими все большее значение, являют­ся запись и хранение информации. Методы голографии позволяют записывать в сотни раз больше страниц печатного текста, чем методы обычной микрофотографии. По подсчетам, на фотопластинку размером 32´32 мм можно записать 1024 голограммы (площадь каждой из них 1 мм2), т. е. на одной фотопластинке можно «разместить» книгу объемом свыше тысячи страниц. В качестве будущих разработок могут служить ЭВМ с голографической памятью, голографический электронный микроскоп, голографические кино в телевидение, голографическая интерферометрия и т. д.

Задачи

23.1. Плоская световая волна с длиной волны 0,6 мкм падает нормально на диафрагму с круг­лым отверстием диаметром 1 см. Определить расстояние от точки наблюдения до отвер­стия, если отверстие открывает: 1) две зоны Френеля; 2) три зоны Френеля. [1) 20,8 м; 2) 13,9 м]

23.2. Дифракционная картина наблюдается на расстоянии 1 м от точечного источника монохро­матического света (l=0,5 мкм). Посередине между источником света и экраном находится диафрагма с круглым отверстием. Определить радиус отверстия, при котором центр дифракционной картины на экране будет наиболее темным. [0,5 мм]

23.3. На щель шириной 0,2 мм падает нормально монохроматический свет с длиной волны 0,5 мкм. Экран, на котором наблюдается дифракционная картина, расположен параллель­но щели на расстоянии 1 м. Определить расстояние между первыми дифракционными минимумами, расположенными по обе стороны центрального фраунгоферова максимума. [5 мм]

23.4. Определить число штрихов на 1 мм дифракционной решетки, если углу p/2 соответствует максимум пятого порядка для монохроматического света с длиной волны 0,5 мкм. [400 мм–1]

23.5. Узкий параллельный пучок монохроматического рентгеновского излучения падает на грань кристалла с расстоянием 0,28 нм между его атомными плоскостями. Определить длину волны рентгеновского излучения, если под углом 30° к плоскости грани наблюдается дифракционный максимум второго порядка. [140 пм]

23.6. Определить постоянную дифракционной решетки, если она в первом порядке разрешает две спектральные линии калия (l1=578 нм и l2=580 нм). Длина решетки 1 см. [34,6 мкм]

Глава 24 Взаимодействие электромагнитных волн с веществом

§ 185. Дисперсия света

Дисперсией света называется зависимость показателя преломления n вещества от частоты n (длины волны l) света или зависимость фазовой скорости v световых волн (см. § 154) от его частоты n. Дисперсия света представляется в виде зависимости

(185.1)

Следствием дисперсии является разложение в спектр пучка белого света при прохождении его через призму. Первые экспериментальные наблюдения дисперсии света принад­лежат И. Ньютону (1672 г.).

Рассмотрим дисперсию света в призме. Пусть монохроматический пучок света падает на призму с преломляющим углом А и показателем преломления п (рис. 268) под углом a1. После двукратного преломления (на левой и правой гранях призмы) луч оказывается отклоненным от первоначального направления на угол j. Из рисунка следует, что

(185.2)

Предположим, что углы А иa1 малы, тогда углы a2, b 1 и b 2 будут также малы и вместо синусов этих углов можно воспользоватьсяих значениями. Поэтому a1/ b 1= n, b 2/a2=1/ n, а таккак b 1 +b 2= А, то a2 =b 2 n=n(A–b 1 )=n (A– a1 /n)=nA– a1, откуда

(185.3)

Из выражений (185.3) и (185.2) следует, что

(185.4)

т. е. угол отклонения лучей призмой тем больше, чем больше преломляющий угол призмы.

Из выражения (185.4) вытекает, что угол отклонения лучей призмой зависит от величины n –1, а n — функция длины волны, поэтому лучи разных длин волн после прохождения призмы окажутся отклоненными на разные углы, т. е. пучок белого света за призмой разлагается в спектр, что и наблюдалось И. Ньютоном. Таким образом, с помощью призмы, так же как и с помощью дифракционной решетки, разлагая свет в спектр, можно определить его спектральный состав.

Рассмотрим различия в дифракционном и призматическом спектрах.

1. Дифракционная решетка разлагает падающий свет непосредственно по длинам воли (см. (180.3)), поэтому по измеренным углам (по направлениям соответствующих максимумов) можно вычислить длину волны. Разложение света в спектр в призме происходит по значениям показателя преломления, поэтому для определения длины волны света надо знать зависимость n = f (l) (185.1).

2. Составные цвета в дифракционном и призматическом спектрах располагаются различно. Из (180.3) следует, что в дифракционной решетке синус угла отклонения пропорционален длине волны. Следовательно, красные лучи, имеющие большую длину волны, чем фиолетовые, отклоняются дифракционной решеткой сильнее. Призма же разлагает лучи в спектр по значениям показателя преломления, который для всех прозрачных веществ с увеличением длины волны уменьшается (рис. 269). Поэтому красные лучи отклоняются призмой слабее, чем фиолетовые.

Величина

называемая дисперсией вещества, показывает, как быстро изменяется показатель прело­мления с длиной волны. Из рис. 269 следует, что показатель преломления для прозрач­ных веществ с уменьшением длины волны увеличивается; следовательно, величина dn/dl по модулю также увеличивается с уменьшением l. Такая дисперсия называется нормальной. Как будет показано ниже, ход кривой n (l) — кривой дисперсии — вблизи линий и полос поглощения будет иным: n уменьшается с уменьшением l. Такой ход зависимости n от l называется аномальной дисперсией.

На явлении нормальной дисперсии основано действие призменных спектрографов. Несмотря на их некоторые недостатки (например, необходимость градуировки, различ­ная дисперсия в разных участках спектра) при определении спектрального состава света, призменные спектрографы находят широкое применение в спектральном анали­зе. Это объясняется тем, что изготовление хороших призм значительно проще, чем изготовление хороших дифракционных решеток. В призменных спектрографах также легче получить большую светосилу.

§ 186. Электронная теория дисперсии светя

Из макроскопической электромагнитной теории Максвелла следует, что абсолютный показатель преломления среды

где e — диэлектрическая проницаемость среды, m — магнитная проницаемость. В оп­тической области спектра для всех веществ m»1, поэтому

(186.1)

Из формулы (186.1) выявляются некоторые противоречия с опытом: величина n, являясь переменной (см. § 185), остается в то же время равной определенной постоян­ной . Кроме того, значения n, получаемые из этого выражения, не согласуются с опытными значениями. Трудности объяснения дисперсии света с точки зрения элект­ромагнитной теории Максвелла устраняются электронной теорией Лоренца. В теории Лоренца дисперсия света рассматривается как результат взаимодействия электромаг­нитных волн с заряженными частицами, входящими в состав вещества и совершающи­ми вынужденные колебания в переменном электромагнитном поле волны.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: