Режимы течения жидкости

Расчетное выражение для А.г (и численное значение коэффициента) зависит от режима течения жидкости. Понятие о режимах течения утвердилось в гидравлике после исследований английского ученого О.Рейнольдса в конце XIX в.

Экспериментальная установка Рейнольдса состояла (рис.) из прозрачно­го резервуара 1, заполняемого рабочей жидкостью (уровень ее в ходе опыта поддерживался постоянным с помощью подпитки 7 и сливного устройства 4), прозрачной горизонтальной трубы 2 с плавным входом, регулировочного вентиля 3 и сосуда с жидкой темной краской 6. Из сосуда 6 краска по капиллярной трубке могла подводиться в какую-либо точку входного сечения трубы 2 (поток краски регулировали краном 5). В ходе опытов варьировали диаметр труб 2, скорости жидкости (их рассчитывали по расходу) и ее свойства (плотность, вяз­кость). Индикатором характера течения служила краска.

Опыт Рейнольдса:

1 — резервуар с рабочей жидкостью, 2 — экспериментальная труба, 3 — регулирующий вентиль, 4 — слив избытка жидкости, 5 — кран, 6 — сосуд с краской, 7 — линия подачи рабочей жидкости

Опыты с гладкими трубами показали, что в трубах малого диаметра при небольших скоростях жидкости подаваемая во входное сечение струйка краски проходила по всей длине трубы не размываясь. Такое параллельно-струйчатое (слоистое) течение было названо ламинарным (по латыни lamina — полоска, пластинка). В трубах большого диаметра и при высоких скоро­стях частицы жидкости (а с нею и краски) перемещались хаотически по различным траекториям — с визуально наблюдаемыми завихрениями; в результате поток интенсивно перемешивался и на некотором расстоянии от входа в трубу равномер­но окрашивался. Такое бурное течение с нестационарным возникновением и разрушением жидкостных образований было названо турбулентным (turbulentus означает бурный, беспорядочный). Рейнольдc установил, что склонность жидкости к ламинарному течению возрастает при увеличении ее вязкости и понижении плотности р, к турбулентному течению — с ростом р и снижением µ. Позднее было найдено, что характер течения определяется значением безразмерного комплекса

wdp/µ= wd/v = Re,

названного впоследствии числом Рейнольдса. При значениях Rе ниже некоторой критической величины (Rе кр) течение жидкости — ламинарное; для круглых труб Rе кр * 2300. При увеличении Rе (для изотермического течения в прямых круглых трубках — сверх 104) течение становится существенно турбулентным, причем с ростом Ке интенсивность турбулентности повышается.

В гл.1 было показано, что Rе представляет собой соотношение сил инерции и вязкости. В случае ламинарного режима (малые значения Rе) доминируют силы вязкости (они — в знаменателе Rе), влияние сил инерции вырождается. При этом использование числа Rе, вообще говоря, теряет смысл (или приобретает формальный характер). В случае турбулентного режима (высокие Rе) в целом преобладают силы инерции. Однако вблизи стенок канала (в очень тонком слое), где скорости малы, течение остается близким к ламинарному; поэтому силы вязкости продолжают оказывать некоторое влияние на характер течения — использование Rе для характеристики таких течений сохраняет смысл. Лишь при очень высоких Rе (для круглых труб — свыше 2-107) пристенный слой оказывается практически сорванным — доминируют силы инерции, а влияние сил вязкости вырождается. Значит, вырождается и число Rе — его использование становится формальным. В обоих случаях доминирования сил вязкости либо инерции течения именуют автомодельными относительно критерия Рейнольдса. При значениях Rе, несколько превышающих Rе кр (от 2300 до 10000), силы инерции и вязкости сопоставимы по величине: здесь уже нарушено слоистое течение, но неупорядоченность (хаотичность) выражена еще слабо. Эти режимы течения называются переходными (в зарубежной литературе — промежуточными).

На практике возможно некоторое смещение указанных диапазонов. Так, при очень плавном входе жидкости в круглую трубу и отсутствии каких-либо внешних возмущений удается сохранить ламинарный режим при Rе, заметно превышающих 2300. Наоборот, при неблагоприятных условиях входа (наличии вибрации, турбулизующих вставок, шероховатости стенок кана­ла) течение становится турбулентным при Ке значительно ниже 104.

Особенно сильное влияние внешние условия оказывают на течение в переходном режиме — его характеристики могут смещаться в сторону ламинарного либо турбулентного. В этом смысле переходный режим плохо воспроизводится, так что рас­четные формулы для различных эффектов переноса в переходном режиме (не только в гидравлике, в тепло- и массообменных процессах — тоже) обычно весьма ненадежны и пригодны лишь для определения качественных связей между различными фак­торами и приближенной оценки численных значений характе­ристик процесса.

Физические предпосылки возникновения и поддержания ламинарного или турбулентного режима можно представить сле­дующим образом. В жидкостном потоке под влиянием постоянно действующих случайных возмущений непрерывно возникают отклонения от характерных (для данного течения) параметров движения жидкости. Но при доминировании сил вязкости упомянутые отклонения подавляются, и движение остается упорядоченным, т.е. ламинарным. Этого не происходит, когда преобладают силы инерции: возникшие возмущения здесь развиваются, распространяются по объему потока движение становится неупорядоченным, т.е. турбулентным.

Переход к неупорядоченному течению стимулируется внешними (по отношению к потоку жидкости) причинами: преградами в канале, шероховатостью его стенок, вибрацией каналов и т.п.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: