Основные понятия. Прежде чем рассматривать методы преобразования видеосигнала в цифровую форму, приведем вкратце основные сведения о телевизионном изображении и аналоговом

Прежде чем рассматривать методы преобразования видеосигнала в цифровую форму, приведем вкратце основные сведения о телевизионном изображении и аналоговом видеосигнале.

Телевизионным изображением называют отображение пространственных и временных изменений яркости, цвета и других физических параметров исходного изображения на конечной площади, обычно прямоугольной. В общем случае изображение можно представить в трехмерной системе координат (рисунок 1.1), где функции пространственных координат х, y описывают изменения параметров в плоскости экрана в фиксированный момент времени, а временная ось t отображает процесс во времени.

Рисунок 1.1 — Система координат ТВ изображения

Точка изображения, характеризующаяся определенным набором координат (х, у, t), вместе с ее малой окрестностью называется элементом изображения, или отсчетом. Иногда по аналогии с компьютерной техникой ее еще называют пикселем (pixelpicture element). Понятие пикселя относится к дискретизированным областям пространства и здесь, строго говоря, неприменимо. Тем не менее, с определенными оговорками им пользуются и в телевизионной технике.

Для преобразования изображения в одномерную функцию времени применяют развертку — быстрое сканирование (обычно по горизонтали слева направо со смещением по вертикали сверху вниз) электронным лучом плоскости изображения за время одного кадра (1/25 — 1/30 с), меньшее периода мерцания, различимого глазом. Развертка может быть прогрессивной, когда строки сканируются подряд, или чересстрочной, когда сканируются сначала нечетные, затем четные строки, образуя два полукадра, называемые полями. Развертка дискретизирует изображение только в вертикальном направлении, в горизонтальном сигнал остается аналоговым. Получившийся видеосигнал описывает изменение какого-либо параметра, например, яркости изображения в зависимости от времени. Для передачи по вещательным каналам к нему добавляют сигналы цветности, синхронизации, вводят звуковое сопровождение, телетекст и т.д. Чтобы телевизионный приемник смог правильно воспринять эти сигналы и преобразовать их в изображение и звук, все параметры сигналов должны быть унифицированы, стандартизованы. Говоря о ТВ стандартах, стоит сказать несколько слов об органах международной стандартизации в области телевидения.

Стандартизацией занимается целый ряд международных организаций, области деятельности которых частично перекрываются. Наиболее общие стандарты, охватывающие широкие области применения, разрабатывает Международная организация стандартизации: МОС (ISO), зачастую совместно со своими органами — Международной электротехнической комиссией — МЭК (IЕС), Международной светотехнической комиссией — МСК (СIЕ) и другими. В частности, МОС разработала и приняла стандарты цифрового сжатия телевизионных сигналов семейства МРЕG.

Регламентацию международной деятельности в области электросвязи осуществляет Международный союз электросвязи — МСЭ (ITU) через свои подразделения: сектор радиосвязи МСЭ-P, сектор стандартизации связи МСЭ-Ти др. МСЭ принимает Рекомендации, являющиеся обязательными документами для его членов.

Большая работа по стандартизации ведется на региональном уровне. В Европе этим занимается Европейский союз вещания (ЕСВ), который выпускает Технические Рекомендации, обязательные для его членов. В 1993 году ЕСВ слился с Международной организацией по телевидению и радиовещанию восточноевропейских стран ОИРТ, и теперь Россия также является членом союза. ЕСВ тесно сотрудничает с Европейским институтом стандартов электросвязи (ЕТSI), который принял всеохватывающий набор стандартов по цифровому вещанию, разработанных организацией. Хотя Россия и не входит в Европейский Союз, эти стандарты де-факто признаются в нашей стране.

Одной из старейших нормотворческих организаций в области телевидения является Американское общество Кино и ТВ инженеров (SМРТЕ — Society of Motion Picture and Television Engineers), которое давно уже переросло свои национальные рамки, включает многие организации из разных стран, так что его стандарты по своей авторитетности приравниваются к международным. Формальную легализацию стандартов SМРТЕ для США осуществляет Американский национальный институт стандартов.

Стандартом ТВ сигнала называют совокупность определяющих его основных характеристик, таких как способ разложения изображения, число строк и кадров, формат кадра, длительность и форма синхронизирующих и гасящих импульсов, полярность сигнала, разнос между несущими частотами изображения и звукового сопровождения, метод представления и кодирования цветовой информации (компонентный или композитный) и др. Для черно-белого телевидения существует 10 стандартов, которые принято изображать латинскими буквами B, D, G, H, I, K, K1, L, M, N.

По способу передачи сигналов цветности различают три системы цветного телевидения: SECAM, PAL, NTSC. Каждая из трех систем может применяться с любым из 10 стандартов черно-белого ТВ вещания, давая 30 возможных комбинаций. На практике применяются девять разновидностей РАL, шесть — SЕСАМ и один стандарт из группы NTSC. По стандарту разложения для ТВ сигнала стандартной четкости (ТСЧ) наиболее распространены сочетания 525/59,94/2:1 (NTSC, PAL-М), и 625/50/2:1 (все остальные разновидности PAL и SECAM). В аналоговом телевидении высокой четкости использовались форматы 1125/60 (Япония) и 1250/50 (Европа), но они не нашли широкого распространения.

При международном обмене ТВ программами часто приходится преобразовывать изображение из одного стандарта в другой. Преобразование с различным числом строк, но с той же частотой кадров и коэффициентом чересстрочности называется повышающим или понижающим преобразованием стандарта. Если изменяется частота кадров, это перекрестное преобразование. Частный случай преобразования системы цветности без изменения стандарта (PAL↔SECAM или NTSC↔PAL-M) принято называть транскодированием.

Информация о яркости и цвете объекта в телевидении передается сочетанием трех основных цветов — красного (R), зеленого (G), синего (В). Первоначально цветовые видеосигналы формируются в виде компонентных RGВ -сигналов, но при дальнейшей обработке для обеспечения совместимости с черно-белым телевидением переходят к другому набору компонентных сигналов — яркостному и двум цветоразностным, получаемым из сигналов RGВ путем матрицирования. С учетом пониженной разрешающей способности цветового восприятия человеческого глаза полосу частот цветоразностных сигналов выбирают вчетверо меньше полосы сигнала яркости. В зависимости от размаха цветоразностных сигналов различают стыки Y, PB, PR; Y, R-Y, B-Y; YUV. Для целей наземного вещания используются композитные сигналы NTSC, PAL, SECAM, в которых сигнал цветности объединяется тем или иным способом с сигналом яркости, совместимым с монохромным телевидением, для передачи в одном частотном канале. В системах NTSC и PAL цветоразностные сигналы передаются методом квадратурной модуляции соответствующей поднесущей частоты; в системе SECAM используется метод частотной модуляции двух поднесущих 4,206 и 4,43 МГц.

Для передачи в эфир к собственно видеосигналу добавляются сигналы синхронизации, управляющие перемещением электронного луча в приемном кинескопе. Синхросмесь содержит кадровые и строчные синхронизирующие и гасящие импульсы. На периоде кадрового гасящего импульса, в течение которого луч перемещается из нижней в верхнюю часть экрана, умещаются 25 периодов строки, в течение которых видеосигнал не передается, и эти строки обычно используют для уплотнения ТВ сигнала. В строках 17, 18, 330, 331 передаются сигналы испытательных строк, вертикальный временной код занимает строки с номерами 19, 24, 332 и 334, в строки 20, 21, 333, 334 вводится телетекст. Использование строк различается в национальных стандартах.

Аналоговый телевизионный сигнал в соответствии с его природой повторяет распределение яркости и цветности на пути, по которому производится развертка изображения, то есть он действительно является электрическим аналогом изображения. Разработчикам телевизионных систем пришлось столкнуться с ограничениями аналоговых методов, серьезно сужающими возможности дальнейшего развития телевидения.

Одной из главных причин этих ограничений следует считать слабую помехозащищенность аналогового сигнала, который подвергается в каждом из устройств телевизионного тракта воздействию шумов и других помех. Современная же вещательная ТВ система представляет собой весьма длинную цепь устройств преобразования и передачи сигналов.

В любом звене этой сложной цепи возникает неизбежная потеря качества изображения. Связано это с тем, что в каждом устройстве, при любом из преобразований, которому подвергается сигнал, на него воздействуют помехи. При аналоговых методах усиления и обработки ТВ сигнала эти помехи накапливаются от звена к звену, и тем сильнее, чем больше в ТВ системе процессов обработки, переприема или перезаписей сигнала. Пока этих преобразований немного, суммарные искажения еще могут быть незаметны. Но с развитием телевидения число преобразований очень быстро возрастает.

В таких системах проблема обеспечения необходимой помехоустойчивости становится главенствующей. Существенно уменьшить искажения от помех при формировании телевизионной программы, ее консервации или передаче позволяют цифровые методы. Поэтому в последние годы основное внимание уделяется развитию цифрового телевидения.

Цифровое телевидение — область телевизионной техники, в которой операции обработки, консервации и передачи телевизионного сигнала связаны с его преобразованием в цифровую форму.

Цифровые методы помимо обеспечения высокого качества изображения при воздействии значительных помех обладают и другими достоинствами. Так, при одинаковой пропускной способности канала они позволяют передавать большее число программ по сравнению с аналоговым телевидением. Лучшая помехозащищенность цифрового сигнала позволяет снизить требования к его мощности в процессе доставки к приемным устройствам. Повторные изображения, характерные для аналогового телевидения при многолучевом приеме, цифровыми методами могут быть практически полностью исключены.

Можно представить системы цифрового телевидения двух типов. В системе первого типа, полностью цифровой, преобразование передаваемого изображения в цифровой сигнал и обратное преобразование цифрового сигнала в изображение па приемном экране осуществляются непосредственно в преобразователях свет-сигнал и сигнал-свет. Во всех звеньях тракта передачи изображения информация передается в цифровой форме. В перспективе создание таких преобразователей вполне реально. Однако в настоящее время они еще не существует, а поэтому целесообразно рассматривать цифровые ТВ системы второго типа, в которых с датчиков получается аналоговый ТВ сигнал, затем он преобразуется в цифровую форму, подвергается всей необходимой обработке, передаче или консервации, а затем снова приобретает аналоговую форму. При этом используются существующие датчики аналоговых ТВ сигналов и преобразователи сигнал-свет в телевизионных приемниках. В этих системах на вход тракта цифрового телевидения поступает аналоговый ТВ сигнал, затем он кодируется, т.е. преобразуется в цифровую форму.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: