Понятие энтропии ввёл Клаузиус, а физический смысл её выяснил Больцман. Он предположил, что энтропия связана с термодинамической вероятностью состояния системы

Термодинамическая вероятность (статистический вес) состояния системы – число микросостояний (способов), которыми может быть реализовано данное макросостояние.

Термодинамическая и математическая вероятности связаны между собой:

; (27)

здесь NСП. – число всевозможных способов распределения, и они равновероятны. Математическая вероятность всегда не больше 1, а термодинамическая не меньше 1: , .

Больцман показал, что

. (28)

Из формулы Больцмана (28) следует, что энтропия определяется логарифмом числа микросостояний, с помощью которых может быть реализовано данное макросостояние.

Более вероятное состояние оказывается менее упорядоченным. Для большого числа молекул разница окажется гораздо большей: менее упорядоченное состояние, когда молекулы распределяются равномерно, имеет существенно большую термодинамическую вероятность. Отсюда вытекает физический смысл энтропии: энтропия – мера неупорядоченности.

По второму началу термодинамики, энтропия замкнутой системы не убывает (3):

.

В соответствии с формулой Больцмана, это значит, что все реальные процессы идут в сторону наибольшей термодинамической вероятности; при обратимых процессах термодинамическая вероятность остаётся постоянной.

При малом числе молекул в результате флуктуаций статистический вес состояния может уменьшиться. Это происходит потому, что второе начало термодинамики неприменимо к системам с малым числом частиц.

Таким образом, второе начало термодинамики – статистический закон, выражающий закономерности большого числа частиц. В замкнутой системе, состоящей из большого числа микрочастиц, при необратимых процессах термодинамическая вероятность возрастает, при обратимых остаётся постоянной.

Вопрос 34. XIX век Волновая теория света.

Через сто лет после появления «Начал» авторитет Ньютона достиг высшей точки. Его критика волновой теории света была признана большинством учёных не только в Англии, но и на континенте, хотя убедительного объяснения явлениям дифракции и интерференции так и не было дано. Частично это объяснялось тем, что полная математическая теория волновых колебаний была создана только в начале XIX века (Фурье).

Первый удар по корпускулярной (эмиссионной) теории света нанёс Томас Юнг, врач, специалист по физиологической оптике. Отметим, что он также построил правильную теорию цветового зрения и аккомодации. В 1800 году Юнг разработал волновую теорию интерференции (и ввёл сам этот термин) на основе сформулированного им принципа суперпозиции волн. По результатам своих опытов он довольно точно оценил длину волны света в различных цветовых диапазонах. Юнг рассматривал свет как упругие (продольные) колебания эфира.

Волновая теория Юнга была встречена враждебно. Как раз в это время было глубоко изучено явление двойного лучепреломления и поляризации света (Брюстер, Араго, Био, Лаплас), воспринятое как решающее доказательство в пользу эмиссионной теории. Но тут в поддержку волновой теории (ничего не зная о Юнге) выступил Огюстен Жан Френель, в то время дорожный инженер-строитель. Рядом остроумных опытов он продемонстрировал чисто волновые эффекты, совершенно необъяснимые с позиций корпускулярной теории, а его мемуар, содержащий всестороннее исследование с волновых позиций и математическую модель всех известных тогда свойств света (кроме поляризации), победил на конкурсе Парижской Академии наук (1818).

Курьёзный случай описывает Араго: на заседании комиссии академиков Пуассон выступил против теории Френеля, так как из неё следовало, что при определённых условиях в центре тени от непрозрачного кружка мог появиться ярко освещённый участок. На следующем заседании Френель продемонстрировал членам комиссии этот эффект.

С этих пор формулы Френеля для дифракции, преломления и интерференции вошли во все учебники физики.

Оставалось понять механизм поляризации. Ещё в 1816 году Френель обсуждал возможность того, что световые колебания эфира не продольны, а поперечны. Это легко объяснило бы явление поляризации. Юнг в это время тоже пришёл к такой идее. Однако поперечные колебания ранее встречались только в несжимаемых твёрдых телах, в то время как эфир считали близким по свойствам к газу или жидкости. Незадолго до тяжёлой болезни Френель представил мемуар с описанием новых опытов и полную теорию поляризации, сохраняющую значение и в наши дни.

Классическая волновая оптика была завершена, поставив в то же время труднейший вопрос: что же такое эфир?

Следующие почти сто лет обозначены триумфальным успехом волновой теории во всех областях.

1832: Уильям Гамильтон открыл тонкий эффект (коническую рефракцию в двухосных кристаллах), который сначала обнаружился при анализе математической модели, а затем подтверждён экспериментально.

1850: опыт Физо показал, что скорость света в воде уменьшается (в эмиссионной теории она должна была увеличиться).

Вопрос 35. Понятие об эффективной массе. Распределение электронов. Особенности энергетических диаграмм металлов, полупроводников и диэлектриков.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: