Вопрос 3. Цифровой анализ спектра

При цифровом анализе спектра исследуемый сигнал преобразуют в цифровой код и вычисляют составляющие спектра с помощью специализированных микропроцессоров. Цифровые анализаторы спектра по совокупности дискретных отсчетов (выборок) аналогового сигнала вычисляют спектральную плотность путем замены интеграла на конечную сумму из некоторого числа выборок. Такие вычисления осуществляют с помощью алгоритмов дискретного и быстрого преобразований Фурье.

Современный цифровой анализатор представляет собой качественно новый тип аппаратуры, в которой специфические функции многочисленных приборов моделируют с помощью набора компьютерных программ: для изменения характера функционирования достаточно вызвать соответствующую программу обработки без аппаратурной перестройки устройств. Комплекс программ цифрового анализатора спектра позволяет сочетать в одном приборе практически все функциональные возможности, необходимые для всестороннего исследования параметров раз­личных сигналов и процессов.

Рис 7. Возможности современного цифрового анализатора

Принцип действия цифрового анализатора спектра основан на вычислительных процедурах определения параметров и характеристик различных сигналов и процессов. В функциональные возможности современного цифрового анализатора (рис 7)

заложены следующие алгоритмы:

• восстановление сигнала по его спектру, т.е. вычисление обратного преобразования Фурье;

• анализ и синтез характеристик электрических цепей: определение импульсных, передаточных и фазовых характеристик цепей с сосредоточенными постоянными; анализ известных диаграмм Вольперта-Смитта (характеристики и параметры цепей с распределенными постоянными); устойчивость цепей со звеньями обратных связей — анализ критерия устойчивости Найквиста;

• корреляционный анализ сигналов: вычисление корреляционных и взаимокорреляционных функций; определение фазовых соотношений сигналов (идентификация сигналов);

• спектральный анализ периодических, импульсных и случайных сигналов: анализ квадратурных составляющих — модуля спектра, фазового спектра, комплексного спектра; определение спектра мощности случайного процесса и его функции когерентности; вычисление взаимного спектра; усреднение спектра по полосе частот; определение кепстра мультипликативных сигналов;

• цифровая обработка и фильтрация сигналов и вычисление произведения спектров (операция, обратная свертке);

• измерение параметров сигналов (амплитуды, частоты, фазы, индекса модуляции, девиации частоты сигналов; определение параметров импульсных сигналов — амплитуды, длительности, длительностей фронтов, периода следования и т.д.);

• анализ статистических характеристик случайных процессов; построение гистограмм мгновенных значений сигналов; определение одномерной плотности вероятности и интегральной функции распределения случайных процессов.

Структурная схема современного цифрового анализатора спектра приведена на рис. 8. Исследуемые сигналы по одному (А) или двум (А, Б) каналам подают на соответствующие усилители с переменным коэффициентом усиления, которые приводят различные уровни входных сигналов (от 0,01 до 10 В) к значению, необходимому для нормальной работы последующих трактов.

Рис. 8 Структурная схема цифрового анализатора спектра.

Затем сигналы поступают на ФНЧ, который выделяют подлежа­щую анализу полосу частот. Исследователь может выключить фильтры. С выхода фильтров сигналы поступают на АЦП, где их преобразуют в параллельный 10-разрядный двоичный код. Может работать как один, так и оба канала. В последнем случае выборки сигнала проходят одновременно по обоим каналам, что позволяет сохранить в цифровом коде информацию о фазовых соотношени­ях сигналов, необходимую для измерения взаимных характери­стик. Частота выборки определяется кварцевым генератором и может изменяться исследователем в пределах 0,2... 100 кГц. Эта частота определяет отсчетный масштаб прибора во временной и частотной областях.

Тракт прохождения исследуемого сигнала от входа усилителей до выхода АЦП имеет калиброванные значения коэффициента передачи во всем диапазоне частот и уровней напряжений. Информация о значении коэффициента передачи и частота выборки вводятся в цифровое вычислительное устройство (микропроцессор) и учитывают при формировании конечного результата. Микропроцессор работает в соответствии с заложенной в него программой. Программа состоит из ряда подпрограмм, организующих ту или иную вычислительную операцию (вычисление спектра, корреляционной функции, построение гистограммы и т.д.). Вызов необходимой подпрограммы осуществляют устройством управления. Результаты вычислений выводят на индикаторное или регистрирующее устройство, в качестве которого может быть использован цифровой графопостроитель, принтер, цифровой магнитофон, дисковый накопитель, осциллограф или самописец. Последние два подключают через ЦАП. Все результаты сопровождают масштабным коэффициентом для перевода их в физические единицы.

При анализе сигналов, представленных в цифровом виде (в виде числового ряда), данные вводятся непосредственно в цифровое вычислительное устройство с помощью устройства ввода цифровых данных с наборного табло пульта управления в десятичном коде. Основные режимы работы цифрового анализатора спектра: спектральный, статистический и корреляционный ана­лиз; измерение амплитудного и фазового спектров; измерение спектра мощности, взаимного спектра; измерение корреляционных функций.

Подготовил:

преподаватель кафедры ОРЭ Н.Н. Щетинин


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: