Применение радиоуглеродного метода

Археология и четвертичная геология были и остаются главными областями использования радиоуглеродного метода. В археологии применение независимого способа определения возраста стало поистине революционным и в значительной степени изменило существовавшие археологические концепции [4]. Проводить серьёзные археологические работы без применения радиоуглеродного датирования в настоящее время невозможно. Теперь наряду с анализом «рутинных» объектов, к которым можно отнести древесину, древесный уголь и кости, всё чаще проводится определение возраста (в основном методом УМС) таких непригодных в недалёком прошлом материалов, как отдельные семена и плоды растений, текстиль, жирные кислоты (липиды) в древней керамике и сама керамика, остатки крови на каменных орудиях, наскальная живопись. Общее количество полученных радиоуглеродным методом дат для археологических памятников в мире составляет сегодня, видимо, несколько сотен тысяч; к началу 1960-х было не более 2400 [3, с. 151].

Результаты использования радиоуглеродного метода в археологии Старого и Нового Света обобщены в сводных работах [4, 11, 12]. Из наиболее интересных и важных примеров можно назвать датирование Туринской плащаницы [13], рукописей Мёртвого моря [14], наскальных рисунков в пещерах Франции и Испании [15], древнейших в мире стоянок с керамикой и земледелием [16, 17]. Широкие возможности открыл радиоуглеродный метод археологам и дендрохронологам, которые теперь могут «привязать» свои данные к абсолютной шкале времени с помощью так называемого «сопоставления флуктуаций». В данном случае флуктуации есть резкие изменения содержания изотопа 14С в течение последних 10–12 тыс. лет, которые могут быть идентифицированы и сопоставлены с зафиксированными на международно признанной кривой пиками [2, с. 173, 174].

В датировании древних памятников не обошлось без разоблачения подделок. Ещё на заре радиоуглеродного метода один из первых образцов, предположительно из Древнего Египта, оказался современной копией [4]. Хрестоматийным примером является датированиепилтдаунского «человека»из Англии (ожидаемый возраст – не менее 75 000 лет, реальный – 500–600 лет) и остатков «Ноева ковчега» на горе Арарат (их возраст составил всего 1200–1400 лет, а не как минимум 5000 лет согласно библейской хронологии) [4].

В четвертичной геологии и палеогеографии радиоуглеродный метод применяется так же широко, как и в археологии. С его помощью установлены хронологические параметры основных тёплых и холодных эпох за последние 40–50 тыс. лет [6], особенно для последних 10 тыс. лет (эпоха голоцена) (см., например: [12, 18]). Литература по применению радиоуглеродного метода в геологии чрезвычайно обширна (см., например: [19, p. 2899–2965]), поэтому остановимся лишь на некоторых примерах: геохронология второй половины позднего плейстоцена Сибири [20, 21], датирование извержений вулканов Камчатки [22]; хронология ледникового века северо-запада Европейской России [6, с. 243–271] и севера Евразии в целом [23].

Радиоуглеродный метод стал важнейшим инструментом в изучении процесса вымирания крупных млекопитающих (так называемой мегафауны) в конце новейшего геологического периода – плейстоцена (от 2.6 млн. до 10 тыс. лет назад). На основе массового радиоуглеродного датирования ископаемых остатков мамонтов, шерстистых носорогов и ряда других видов животных удалось установить время и место их окончательного вымирания [24]. Одним из важнейших достижений стало определение возраста костей и бивней мамонтов о. Врангеля (Северо-Восточная Сибирь): останки оказались удивительно «молодыми» – от 9000 до 3700 лет назад [25]; на сегодня это самые поздние мамонты на Земле. Не менее интересны результаты радиоуглеродного датирования костей ископаемого гигантского оленя с рогами размахом до 4 м: его последние представители обитали на Южном Урале и в Зауралье вплоть до 6900 лет назад [26]. В последнее время c помощью прямого УМС-датирования скорлупы яиц азиатского страуса получены данные о его существовании в Восточной и Центральной Азии до 8000 лет назад [27].

Широко используется радиоуглеродный метод в геофизике, океанологии, биологии, медицине и многих других науках. Измерения содержания 14С в морской воде прочно вошли в практику океанологических исследований (это позволяет выявить закономерности циркуляции вод Мирового океана) и в изучение грунтовых вод суши [12] и минеральных источников. Динамично развивающимся направлением можно назвать исследование содержания 14С в таких объектах, как метеориты и ледники [2, 12]. Радиоуглеродный метод помогает в изучении астрофизических явлений – колебаний солнечной активности, взрывов сверхновых звёзд и др. [7, 12].

Рис. 4. Содержание изотопа 14С в атмосфере Земли с начала ядерных испытаний (1945–1952) до настоящего времени (по [29], с изменениями)

Большую роль играет измерение активности изотопа 14С в исследованиях, связанных с «техногенным» радиоуглеродом. Как известно, во второй половине 1950-х годов в связи с началом испытаний водородных бомб в атмосфере произошло образование «искусственного» 14С в результате испускания большого количества свободных нейтронов в момент ядерного взрыва (см. рис. 1, уровень «образование»), и природный фон был сильно нарушен. К 1965 г. содержание изотопа 14С превысило его «добомбовое», то есть фоновое, количество почти в 2 раза – 190% по отношению к уровню 1950 г. (рис. 4) и даже сегодня всё ещё не вернулось к исходному состоянию. Сейчас активность 14С составляет около 105–110% от таковой в 1950 г. [28], появился даже термин «послебомбовый 14С». Однако нет худа без добра: данное явление широко используется для определения времени гибели молодых (не старше 40–50 лет) организмов [29]; иногда с помощью такого подхода удаётся разоблачить подделки древних человеческих мумий [30]. На феномене искусственного обогащения атмосферы 14С в 1950–1960-е годы построены многие биомедицинские исследования, где изотоп 14С является своеобразной «меткой» (см., например: [12, p. 570–589]). С помощью измерения активности 14С проводятся исследования загрязнения природной среды радионуклидами, выделяемыми при производстве топлива для атомной промышленности. И уж совсем «экзотическим» можно назвать использование радиоуглеродного метода в криминалистикедля выявления торговли слоновой костью (животные, убитые после 1955–1960 гг., имеют высокое «послебомбовое» содержание 14С в бивнях) и контрабанды наркотиков (также на основе «послебомбового» эффекта) [31]. Поистине, сферы применения этого метода почти безграничны!

Одним из направлений радиоуглеродных исследований, важным для всех наук, в 1960–2000-х годах стала калибровка 14С-дат [2]. Необходимость калибровки вызвана тем обстоятельством, что количество изотопа 14С в атмосфере, гидросфере и биосфере не оставалось постоянным (как полагали поначалу У.Ф. Либби и его коллеги), а изменялось под воздействием ряда внешних условий, главное из которых – колебания в недавнем геологическом прошлом активности космических лучей, продуцирующих радиоуглерод (см. рис. 1). Следовательно, зависимость между 14С и календарным возрастом не является линейной. Влияние этого фактора, осложняющего перевод радиоуглеродного возраста в астрономические (календарные) даты, в настоящее время преодолено для отрезка времени от наших дней до 20 000 лет назад; успешно ведутся работы по составлению графиков пересчёта 14С-дат в календарные вплоть до предела чувствительности радиоуглеродного метода (около 45 000–50 000 14С лет) [8].


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: