Считывание потенциального рельефа с матрицы ПЗС

Фотоэлектрические преобразователи изображения на ПЗС делятся на два класса: линейные (одномерные) и матричные (двумерные). В линейных ФЭП фоточувствительные элементы расположены вдоль одной линии, обычно строки, и формируют одномерное изображение объекта. Такие однострочные ФЭП могут быть использованы при контроле за технологическими процессами производства, при специальном анализе и анализе оптической плотности макро- и микрообъектов. Однострочные ФЭП могут быть использованы и для получения двумерного изображения. В этом случае необходимо перемещение ФЭП или объекта в направлении, перпендикулярном направлению строчной развертки.

Твердотельным аналогом передающей трубки с электронным сканированием по строке и кадру является матричный формирователь сигнала изображения. Он представляет собой двухкоординатный массив светочувствительных элементов, в котором осуществляется электронное сканирование по координатам х и y. При проектировании такой двухкоординатной матрицы решается вопрос организации ее считывания.

Для наиболее полного использования достоинств ПЗС зарядовые пакеты должны перемещаться к одному выходному устройству, а порядок считывания информации — обычно соответствовать принятому телевизионному стандарту. При выборе способа организации считывания необходимо обеспечить минимальное смазывание изображения, возникающее при переносе накопленных зарядовых пакетов через освещенные области прибора. Поэтому в современных матричных ФЭП на ПЗС области накопления заряда и его переноса разделяют.

По способу организации считывающие матрицы ПЗС делятся на матрицы с кадровым переносом заряда (КП), матрицы со строчным переносом заряда (СП) и матрицы со строчно-кадровым переносом заряда (СКП).

Матрицы ПЗС КП (см. рис. 8.12) включают в себя секцию накопления — фотоприемную секцию, секцию хранения или памяти, которая защищена от света и равна по площади секции накопления, и один или несколько параллельных выходных сдвиговых регистров.

Рис. 8.12. Способ организации покадрового считывания

Во время активной части поля происходит накопление зарядовых пакетов в фотоприемной секции. Во время кадрового гасящего импульса, накопленные заряды всех строк поля последовательно переносятся в защищенную от света секцию хранения. Далее во время накопления в фотоприемной секции следующего кадра информация из секции хранения построчно передается в секцию переноса заряда — сдвиговый регистр. Сдвиг строк в секцию переноса осуществляется во время обратного хода горизонтальной развертки. Затем зарядовые пакеты строки поэлементно выводятся сдвиговым регистром к выходному устройству, преобразующему заряды в сигнал изображения. После считывания всей видеоинформации из секции хранения начинается перенос следующего кадра.

Одним из основных достоинств покадрового считывания является уменьшение эффекта смазывания изображения, так как зарядовая информация считывается из защищенной от света секции хранения и дополнительной засветки при сканировании не происходит. При покадровой организации легко осуществляется чересстрочное разложение изображения, также проста электродная структура, что позволяет компактно расположить ячейки матрицы. Принцип покадрового переноса удобен для освещения матрицы со стороны подложек, что позволяет удвоить квантовую эффективность прибора и получить более равномерную характеристику спектральной чувствительности.

Таким образом, в матрице с покадровым считыванием перенос зарядовых пакетов к выходному устройству осуществляется в три приема: 1) перенос из секции накопления в секцию памяти; 2) перенос из секции памяти в сдвиговый регистр; 3) перенос из сдвигового регистра в выходное устройство. Нетрудно видеть, что число переносов для разных элементов кадра будет различным. Максимальным оно будет для первого элемента верхней строки и минимальным — для последнего элемента нижней. Максимальное число переносов для одного зарядового пакета нетрудно подсчитать. Для покадровой организации считывания по трехтактной схеме сдвига число переносов N max = 2 х 3 z + 2 n, где z — число строк; п — число элементов в строке. В приведенном равенстве первый член учитывает число переносов по кадру, а второй — число переносов вдоль строки.

Учитывая, что зарядовые пакеты переносятся не полностью, так как, во-первых, часть заряда теряется в ловушках, существующих на границе кремния с окислом, а во-вторых, при определенной скорости переноса часть заряда может отстать от пакета и появиться в следующем. Неэффективность переноса заряда ε накладывает определенные ограничения на скорость работы ПЗС и полное число переносов, которые можно совершить без существенного разрушения сигнала. Если ε — относительная величина и характеризует часть заряда, отставшую от пакета на один перенос, умножив ε на число переносов в приборе N, получим результирующую неэффективность переноса N ε всего прибора.

Недостатком матриц ПЗС КП является неполное устранение смаза изображения, которое проявляется в виде вертикальных тянущихся продолжений за очень яркими деталями. Смаз появляется из-за того, что при переносе накопленных зарядов из фотоприемной секции в секцию памяти свет продолжает попадать в фотоприемную секцию.

Для уменьшения величины смаза изображения были разработаны матрицы со строчным переносом зарядов (см. рис. 8.13), в которых область накопления образована вертикальными столбцами светочувствительных элементов, между которыми помещены защищенные от света вертикальные сдвиговые регистры. В течение времени кадра в светочувствительных элементах накапливаются зарядовые пакеты. Во время гасящего кадрового импульса они одновременно переносятся в соседние ячейки вертикальных сдвиговых регистров. Во время накопления следующего кадра, зарядовые пакеты из вертикальных регистров одновременно сдвигаются в горизонтальный (выходной) регистр. Сдвиг по вертикальным регистрам на один элемент происходит во время обратного хода строчной развертки, а вывод зарядовых пакетов из горизонтальных регистров в выходное устройство — за время прямого хода строчной развертки. Полное освобождение вертикальных сдвиговых регистров от зарядов происходит за время кадра.


Рис. 8.13. Матрица со строчным переносом зарядов

Рис. 8.14. Матрица со строчно-кадровым переносом зарядов


Для обеспечения чересстрочной развертки в матрице ПЗС СП заряды из светочувствительных ячеек в вертикальные регистры переносятся: в нечетных полях — из нечетных ячеек, а в четных полях — из четных ячеек.

Величина смаза изображения в матрицах ПЗС СП существенно меньше, чем в ПЗС КП. Однако при наличии на объекте ярко освещенной детали, уровень смаза оказывается заметен. В матрицах ПЗС СП он обусловлен попаданием части наклонно падающего света под алюминиевый экран над вертикальным ПЗС регистром. Это паразитная засветка значительно меньше, чем в матрицах ПЗС КП, но время ее действия существенно больше и равно длительности поля.

В трехматричных камерах вещательного назначения необходимо дальнейшее снижение уровня смаза изображения. Для обеспечения этого требования были разработаны гибридные матрицы ПЗС со строчно-кадровым переносом заряда (СКП). Матрицы ПЗС СКП (см. рис. 8.14 и 8.15) отличаются от матриц ПЗС СП (см. рис. 8.13) наличием в них дополнительной секции хранения зарядов на длительность поля.

Рис. 8.15. Концепция строчно-кадрового переноса

Поэтому частота переноса заряда из вертикальных ПЗС регистров в секцию хранения может быть выбрана в десятки раз больше частоты строк, используемой в матрицах ПЗС СП. Это позволяет во столько же раз уменьшить уровень смаза изображения. Недостатки матриц ПЗС СКП заключаются в относительной сложности изготовления и высокой стоимости производства.

Основные недостатки матричных ПЗС СП – невозможность освещения со стороны подложки и неполное использование светового потока из-за того, что фотодиоды занимают не всю площадь кристалла фотоны, попадающие на экранированные от света вертикальные ПЗС-регистры, не создают зарядов. Вследствие этого существенно снижается чувствительность камер.

Таким образом, уменьшение размеров светочувствительной площади в матрицах со строчным переносом косвенно ухудшает световую чувствительность матрицы. Эта проблема может быть разрешена очень просто (хотя технологически это очень сложно) – поверх каждого пикселя (фотодиода) помещается микролинза. Микролинза концентрирует весь падающий свет на маленькую область, на сам пиксель (фотодиод), собирает в него весь световой поток, и этим самым эффективно увеличивает минимальную освещенность фотодиода (см. рис. 8.16).

Рис. 8.16,а. Сравнение традиционных схем с микролинзами

Рис. 8.16,б. Структура ПЗС-матрицы с микролинзами (фотография сделана электронным микроскопом)

Число фотодиодов в столбце матричного ПЗС выбирается равным числу строк в кадре. Чересстрочное разложение в матричных ПЗС со строчным переносом может быть реализовано различными способами. В простейшем случае в первом поле зарядовые пакеты из нечетных фотодиодов считываются в вертикальный ПЗС-регистр, а в четных фотодиодах накопление продолжается. Во втором поле считываются заряды, накопленные в четных фотодиодах. Размер светочувствительного элемента по вертикали оказывается равным размеру одного фотодиода. Центры соседних строк расположены на равном расстоянии друг от друга. Время накопления при таком считывании составляет в телевизионном режиме 40 мс – время кадра. Поэтому данный режим получил название режима накопления кадра. Столь большое время накопления приводит к искажениям при передаче подвижных объектов. Появляется зубчатость вертикальных границ при движении объектов по горизонтали. Для преодоления этого недостатка был разработан режим накопления поля.

Световая характеристика матрицы ПЗС в рабочем диапазоне освещенности линейна (см. рис. 8.17). Точка 1 соответствует выходному

сигналу в отсутствие освещения и определяет темновой ток, обусловленный в большой степени термогенерацией неосновных носителей. Точка 2 характеризует режим насыщения элемента матрицы, т.е. полное заполнение потенциальной ямы неосновными носителями. Глубина потенциальной ямы определяется конструктивными параметрами матрицы и потенциалом накопления, значение которого ограничено напряжением пробоя МОП-конденсатора.


Рис. 8.17. Световая характеристика матрицы ПЗС

Рис. 8.18. Спектральная характеристика матрицы ПЗС


Спектральная чувствительность матричного формирователя (рис. 8.18 и 8.19) имеет подъем в длинноволновой области спектра и спад в области длин волн 0,4...0,5 мкм (кривая 1), который обусловлен сильным поглощением на этом участке спектра нанесенными на полупроводниковую подложку поликремниевыми электродами.

Рис. 8.19. Спектральная чувствительность глаза и ПЗС-матрицы

Для повышения чувствительности в этой области спектра в поликремниевых электродах вскрыты окна. Площадь окон составляет примерно 15... 20 % от площади фоточувствительной поверхности элемента. Это подняло чувствительность матрицы на длине волны λ = 0,4 мкм до 20 % (кривая 2), что позволило использовать матрицу в цветном телевидении. Разрешающая способность определяется числом элементов накопления в матрице ПЗС. Для систем телевидения высокой четкости разработаны матрицы ПЗС с числом элементов 1035x1920.

Спектральная чувствительность ПЗС-матрицы зависит от типа кремниевой подложки, но общая характеристика является результатом фотоэффекта: более длинные волны глубже проникают в кремниевую структуру ПЗС. Имеется в виду красный и инфракрасный свет (рис. 8.19).

Однако такое проникновение является вредным. Такие волны настолько сильны, что могут генерировать электронные носители в зонах, которые не должны подвергаться воздействию света. В результате в изображении пропадают мелкие детали, потому что заряд ячеек растекается по соседним, теряя при этом компоненты высокого разрешения и вызывая «эффект заплывания». Может быть затронута также и масковая зона (рис. 8.15), предназначенная лишь для временного хранения зарядов и не предназначенная для засвечивания, в результате чего могут, в значительной степени возрасти шумы и вертикальный ореол. Поэтому в усовершенствованных ПЗС-видеокамерах применяются специальные оптические инфракрасные отсекающие фильтры. Они монтируются сверху ПЗС-матрицы и ведут себя как оптические НЧ фильтры с частотой среды порядка 700 нм, вблизи красного цвета (рис. 8.20) [28].

Рис. 8.20. Инфракрасный отсекающий фильтр изменяет характеристику спектральной чувствительности ПЗС-матрицы

Однако в тех случаях, когда предполагается использовать видеокамеру (черно-белую) в условиях низкой освещенности или в систему входят источники инфракрасного освещения объектов, такие фильтры не используются (чтобы не ослаблять чувствительность камер).

В цветных ПЗС-камерах, напротив, нужно использовать ИК-отсекающий фильтр. Типичная черно-белая ПЗС-матрица без инфракрасного фильтра может дать приемлемый уровень видеосигнала при освещенности мишени камеры в 0,01 лк. Та же камера с ИК-фильтром потребует освещенность в 10 раз большую. Но в этом случае верность цветопередачи является определяющим критерием.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: