Семинары 9, 10. Явления переноса

В состоянии термодинамического равновесия макроскопические параметры молекулярной системы не зависят от координат. Если система не изолирована, то макроскопические параметры (давление, температура, концентрация, электрический потенциал и др.) могут меняться от точки к точке. При наличии градиентов этих параметров в системе возникают потоки молекулярных свойств (внутренней энергии, импульса, концентрации), стремящиеся вернуть её в равновесное состояние.

Эти процессы носят название явлений переноса. К ним, в частности, относятся диффузия, теплопроводность, вязкость. В самых простейших случаях эти явления можно описать с помощью одномерных стационарных уравнений переноса.

Уравнение самодиффузии:

, (9.1)

где In – плотность потока «меченых» частиц, D – коэффициент самодиффузии, n – концентрация «меченых» частиц.

Уравнение теплопроводности:

, (9.2)

где IQ – плотность потока внутренней энергии, k - коэффициент теплопроводности, Т – температура.

Уравнение вязкости:

, (9.3)

где Imu – плотность потока импульса, h - коэффициент вязкости, v – скорость слоя газа (жидкости).

Эти уравнения могут быть получены из обобщённого уравнения переноса для газов:

, (9.4)

где IG – поток молекулярного свойства G, n0 – концентрация, <v> - средняя скорость, l - средняя длина свободного пробега молекул газа.

Течение газа через трубки описывается уравнениями, имеющими такую же математическую структуру, как и уравнения переноса.

Наиболее важными из них являются

а) течение Пуазейля (для плотного газа << 2r), которое описывается уравнением

, (9.5)

где Q – масса ежесекундно протекающего через сечение трубы газа, r – радиус трубы, r - плотность газа, h - вязкость, P – давление газа;

б) кнудсеновское течение (для ультраразреженного газа, >> 2r, через капилляры) описывается уравнением

, (9.6)

где N – поток молекул через сечение трубки S, n – концентрация разреженного газа.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: