Примеры расчета

Пример I. Дано: Многопустотная плита перекрытия, свободно опирающаяся по двум сторонам. Размеры сечения: b=1200 мм, длина рабочего пролета l =6 м, высота сечения h=220 мм, толщина защитного слоя = 20 мм, растянутая арматура класса А-III 4 стержня диаметром 14 мм; тяжелый бетон класса В20 на известняковом щебне, весовая влажность бетона – 2%, средняя плотность бетона в сухом состоянии 2300 кг/м3, диаметр пустот d = 160 мм; нормативная нагрузка =5,5 кН/м.

Требуется определить. Предел огнестойкости плиты по потере несущей способности.

Решение:

Максимальный изгибающий момент

,

,

Рис.5. К расчету многопустотной плиты:

а – поперечное сечение; б – расчетное сечение; в – расчетная схема

а – аl +

h0 = h – a = 220 – 27 = 193 мм

Для бетона класса В20 Rвп = 15,0 МПа (табл.12 [1]),

,

Rsп = 390 МПа (табл.19 [1]),

Rs = 616 мм2 (приложение 16)

Находим xtem, предполагая, что xtem < hf.

По формуле (44), где b=bf,

xtem = 6мм < hf = 30мм

Напряжение в сечении растянутой арматуры:

По формуле

Из приложения 15 при γs,tem = 0,49 для арматуры класса А-III, ts,ст = 5860С;

prfx =

Из приложения 9 находим х = 0,521.

Теплофизические характеристики бетона:

(приложение 12)

Ctem,m = 710 + 0,84tm = 710 + 0,84 · 450 = 1090 Дж/(кг · 0С) (приложение 12):

м2

По формуле (27) для плиты со сплошным сечением находим предел огнестойкости:

,

где К = 37,2с1/2 (приложение 13.1); К1=0,5 (приложение 13.2)

С учетом пустотности плиты её фактический предел огнестойкости находится путем умножения найденного значения на коэффициент 0,9.

Тогда, Пф = 1,9 · 0,9 = 1,71 ч.

Пример 2. Дано: Однопролетная свободно спертая балка пролетом 6м. Сечении балки b × h = 100 × 400 мм; а1 = 50мм; а2 = 120мм; С1 = 50мм; тяжёлый бетон класса В2Б на гранитном щебне; рабочая арматура 4Ø20 А-III; нормативная нагрузка 14кН/м.

Требуется определить предел огнестойкости балки.

Решение:

Конструктивные параметры балки

Площадь сечения арматуры Аs1 = 2Ø20 A-II – 628 мм2 (Приложение 16);

Аs2 = 2Ø20 A-II – 628 мм2 (Приложение 16);

h0 = h – a = 400 – 85 = 315мм

Рис. 6. Сечение балки

Арматура класса А-II с As, tot = 1256мм2;

Rsn = 295МПа (табл. 19[1]);

Бетон класса В25 Rbn = 18,5МПа (табл. 12 [1])

Изгибающий момент от действия нормативной нагрузки равен

Для выполнения дальнейших расчетов задаемся интервалами времени τ1 = 0; τ2 = 1,0ч; τ2 = 2ч.

Для времени τ1 = 0 несущая способность балки равна Мp,t,τ = 0 = Rbubx (h0 – 0,5x) =

= 22,3 · 100 · 182,7 · (315 – 0,5 · 182,7) = 91117387 H·мм = 91,12 кН·м,

где

Для времени τ2 = 1,0ч по приложению 17 нахо­дим δx,tem = 15 мм; btem = 100 – 2·I5 = 70 мм. По координатам расположения стержней арматуры определяем их температу­ру (приложение 18) t1 = t2= 380°С; t3 = t4 = 280°С. Этим значениям температур соответству­ют коэффициенты снижения. прочности арматурной стали (приложение 15) γs,tem,1 = γs,tem,2 = 1,0; γs,tem,3 = γs,tem,4 = 1,0

Тогда а = аtem; h0 = h0,tem

Высота сжатой зоны бетона равна:

Несущая способность балки составит:

Мp,tem,τ = 0 = Rbubtem xtem (h0 – 0,5xtem) = 2,3 · 70 · 261 (315 – 0,5 · 261) = =75169174 Н·мм = 75,2Кн·м

Для времени τ3 = 2 ч нахо­дим δx,tem = 30 мм (приложение 17); btem = 100 – 2 · 30 = 40мм.

Температура арматурных стержней составит t1 = t2= 610°С; t3 = t4 = 510°С.

Соответственно значения коэффициентов снижения прочности арматуры будут равны (приложение 15) γs,tem,1 = γs,tem,2 = 0,344; γs,tem,3 = γs,tem,4 = 0,63.

рис. 7. К расчету предела огнестойкости балки

Тогда ,

Ns,tem = 198426Н = 198,5кН.

Примечание: для балок с арматурой в один ряд

atem = a; h0,tem = h0

Высота сжатой зоны бетона равна:

мм

Несущая способность балки будет равна Мp,tem,τ =0 = 22,3 · 40 · 222,5 (304,7 – 0,5 · 222,5) = 38394021 Н·мм = 38, 4 кН · м.

Строим график снижения несущей способности балки и определяем ее фактичес­кий предел огнестойкости Пф =1,5 ч.

Рис/ 8. Определение Пф балки

Пример 3. Дано: Желе­зобетонная колонна сече­нием 0,4 × 0,4 м, расчетная длина колонны l0= 6,0 м, бетон класса В20, средняя плотность бетона в сухом состоянии на гранитном щебне, ρос = 2330 кг/м3, весовая влажность W = 2,5%, арматура класса A-III 4Ø28, толщина защитного слоя а l = 30мм, нормативная нагрузка Nn = 1037кН.

Требуется определить фактический предел огнестойкости колонны.

Решение:

Прочностные характеристики материалов

Рис. 9. К расчету огнестойкости колонны

Арматура класса A-III Rsn = 390МПа (табл. 19 [1]), МПа,

мм2 (приложение 16)

Бетон класса В20 с Rbn = 15МПа (табл.12 [1]),

МПа

Теплофизические характеристики бетона:

λtem,m = A – Btm = 1,2 – 0,00035 · 450 = 1,0425 Вт/(м) (приложение 12)

сtem,m = С + Dtm = 710 + 0,84 · 450 = 1088 Дж/(кг·0С) (приложение 12)

Для дальнейших расчетов задаемся интервалами времени τn, равным τ1 = 0; τ2 = 1ч; τ3 = 2ч;

Для τ1 = 0 несущая способность колонны будет равна:

Np,t,τ,o = φtem(Rbub h + RscuAs,tot) = 0,91(18,07 · 400 · 400 + 433,3 · 2463) = 3602160,5 H = 3602 кН, где φtem = 0,91 принят по приложению 14 в зависимости от отношения

Для τ2 = 1ч.

Критерий Фурье равен:

Где к = 0,622 ч0,5 = 37,2 с0,5 (приложение 13)

Где х = у = 0,5h – аl – 0,5d = 0,5·0,4 – 0,03 – 0,5·0,028 = 0,156м

Из приложения 10 находим θх = θу = 0,78,

ty=0,156 = tx=0,156 = 1250 – (1250 – tH) θx = 1250 – 1230 · 0,78 = 290,60C

Температура арматурных стержней при обогреве колонны с четырех сторон будет равна:

Ty = 0,156; x = 0,156; τn = 1,0 =

= tB,

где tb = 9250С определяется по формуле (21)

tb = 345 lg (0,133 · 3600 + 1) = 9250C

По приложению 15 находим значение коэффициента снижения прочности арматуры γв,tem = 0,866.

Для определения размеров ядра бетонного сечения необходимо найти значение ξ.

tx= 0 ty=0 = 1250 – (1250 – tHц

Величину θц находим из приложения 11 при

Fox/4 = θц = 1,0;

tx= 0 ty=0 = 1250 – 1230 · 1,0 = 200С

При критической температуре бетона на гранитном щебне tб, сr = 6500C,

θя,x =

Из приложения 10 при Fox = 0,0267 и θя,x = 0,89 находим ξя,x = 0,15

Тогда

Несущая способность колонны при τn = τ2 = 1,0 ч будет равна:

=0,893(18,07*378*378+433,3*2463*0,866) =3130969 Н=3131 кН.

Для τ3 =2,0ч:

.

При ξ =0,3 (см.расчет) и из приложения 10 находим ,

,

,

где tb= 1029 определяется по формуле (21).

По приложению 15 находим .

При из приложения 11 .

,

.

При и из приложения 10 находим ξ =0,25,

.

Несущая способность колонны при τn= τ3= 2ч составляет:

.

Рис. 10. График зависимости несущей способности колонны от времени пожара

По результатам расчета строим график снижения несущей способности колонны в условиях пожара и определяем ее фактический предел огнестойкости =1ч 57 мин (рис.10).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: