Исследование индуктивных и трансформаторных преобразователей перемещения

1.1 Цель работы

Целью работы является изучение физических основ измерений пространственных характеристик и принципов действия индуктивных и трансформаторных преобразователей, теоретическое и экспериментальное определение их характеристик, а также анализ основных источников погрешности.

1.2 Теоретическая часть

1.2.1 Индуктивные преобразователи

Индуктивные преобразователи нашли широкое применение для преобразования пространственных физических величин (линейных или угловых перемещений) в электрический сигнал.

Принцип работы ИП основан на изменении самоиндукции катушки () при изменении магнитного сопротивления его магнитной цепи. Изменение магнитного сопротивления происходит в результате изменения параметров воздушного зазора под действием входного сигнала.

Схема простейшего ИП приведена на рис. 1а и представляет собой катушку самоиндукции W с ферромагнитным сердечником 1 и якорем 2, отделенным от сердечника воздушным зазором . Магнитное сопротивление зазора измениться в результате изменения величины воздушного зазора или его площади поперечного сечения . Катушка соединена с нагрузкой и источником переменного напряжения .

Сердечник и якорь изготавливают из магнитомягких материалов с малыми потерями на гистерезис. Для уменьшения потерь на вихревые токи сердечник и якорь набирают из отдельных изолированных друг от друга пластин.

Рис. 1, а. Простейший индуктивный преобразователь

Потери на гистерезис и вихревые токи (потери в стали ) обуславливают комплексный характер магнитного сопротивления .

(1.2.1)

где – активное сопротивление магнитной цепи, – реактивная составляющая магнитного сопротивления.

Если пренебречь потоками рассеяния и выпучиванием потока в воздушном зазоре , будет складываться из активного магнитного сопротивления сердечника, якоря

(1.2.2)

и двух воздушных зазоров

, (1.2.3)

где соответственно – , , – длина сердечника, якоря и воздушного зазора в м;

, , – сечение сердечника, якоря и воздушного зазора в ;

, – абсолютная магнитная проницаемость материала сердечника и якоря в Гн/м;

– магнитная проницаемость вакуума.

Реактивная составляющая магнитного сопротивления определяется потерями в стали и при отсутствии или слабом проявлении поверхностного эффекта может быть найдена по формуле

, (1.2.4)

где – круговая частота питающего напряжения;

Ф – действующее значение магнитного потока.

Индуктивность (коэффициент самоиндукции) катушки также будет комплексной величиной

, (1.2.5)

где y – потокосцепление;

J – ток катушки;

– -модуль комплексного магнитного сопротивления.

Тогда сопротивление катушки индуктивности

, (1.2.6)

где – активное сопротивление обмотки катушки.

Из формулы (1.2.6) видно, что учет потерь в стали эквивалентен увеличению потерь в катушке из-за увеличения ее активного сопротивления.

Потери в стали определяются выбранным материалом, конструкцией магнитной цепи, его режимом работы и в ИП должны быть незначительными. Применение магнитопроводов из набора отдельных пластин, материалов магнитопровода с узкой петлей гистерезиса и выбор незначительных рабочих магнитных индукций (0.1÷0.3 Tл) существенно снижают потери в стали.

Для упрощения анализа работы простейшего ИП пренебрежем потерями в стали, магнитным сопротивлением стали , так как при малых зазорах , Пусть имеем и , тогда получим, что эффективное значение тока в нагрузке

(1.2.7)

линейно зависит от перемещения якоря (d) (пунктирная линия на рис.1б). Реальная ФП (сплошная линия на рис. 1б) отличается от полученной идеализированной в области малых и больших перемещений, что обусловлено пренебрежением и , .

Простейшие ИП имеют существенные недостатки:

– нереверсивность;

– наличие значительного нулевого сигнала ();

– нелинейность ФП;

– большое тяговое усилие;

– значительный фазовый сдвиг выходного сигнала.

Рис. 1, б. Функция преобразования простейшего ИП

Поэтому они отдельно применяются редко, а являются составной частью дифференциальных конструкций, у которых якорь является общим для обеих половин ИП. Электрические схемы формирования сигнала выполняются по дифференциальной (рис.2, а) или мостовой схемам (рис.2, б).

а

б

Рис. 2. Электрическая схема ИП: а – дифференциальная; б – мостовая

Рассмотрим работу реверсивного ИП, включенного по дифференциальной схеме.

Схема состоит из дифференциального трансформатора Тр1, двух индуктивностей и простейших ИП, соединенных на общую нагрузку . Входным сигналом является перемещение () от среднего положения общего якоря.

Выходным сигналом является разность токов в нагрузке или падение напряжений на ней.

Определим ФП , где , тогда для приведенной схемы имеем

(1.2.8)

Токи и определим, используя принцип наложения

, (1.2.9)

, (1.2.10)

где – внутреннее сопротивление источника напряжения, которое принимаем одинаковым для обеих половин дифференциального трансформатора;

, – сопротивления половин простейших ИП с индуктивностями и .

Подставим (1.2.9) и (1.2.10) в (1.2.8), получим:

(1.2.11)

Обычно внутреннее сопротивление дифференциального источника напряжения гораздо меньше, чем остальные сопротивления рассматриваемой цепи, также и активные составляющие сопротивлений ИП , . Для упрощения расчета, кроме специальных случаев, сопротивление нагрузки выбирают активным, то есть .

Тогда, пренебрегая и считая, что , , получим выражение напряжения на нагрузке

(1.2.12)

Если пренебречь так же, как и для простейших ИП, потерями в стали, потоками рассеяния и магнитным сопротивлением стали якоря и сердечника, тогда получим в первом приближении индуктивности и .

, , (1.2.13)

где – число витков катушек индуктивности;

– площадь воздушного зазора;

– площадь воздушного зазора при .

Тогда, подставив (1.2.13) в (1.2.12) и проведя преобразования, получим

(1.2.14)

или модуль действующего значения выходного напряжения

, (1.2.15)

где – чувствительность дифференциального ИП по напряжению.

Из (1.2.15) видно, что так же, как и для простейшего ИП в первом приближении получили линейную зависимость ФП (рис. 3, пунктирная линия). Реальная ФП (рис. 3, сплошная линия) будет нелинейной при больших значениях входного сигнала по тем же причинам, что и для простейшего ИП, но уже имеет больший линейный участок ФП. Максимальная чувствительность получиться при холостом ходе, т.е. .

Рис. 3. Функция преобразования дифференциального ИП

Тяговое усилие у дифференциального ИП гораздо меньше, так как представляет разность тяговых усилий простейших ИП. Фаза выходного напряжения изменяется на 180° при переходе через нулевое положение. Практически не удается получить нулевое значение выходного сигнала при среднем положении якоря, т.к. нельзя добиться абсолютной симметрии (геометрической, магнитной, электрической) отдельных простейших ИП. Кроме того, в силу нелинейности кривых намагничивания материалов сердечника и якоря в выходном «нулевом» сигнале будет присутствовать напряжение четных гармоник.

ИП конструктивно выполняются как для преобразования линейного перемещения, так и углового. Различные конструктивные варианты ИП приведены на планшете лабораторного стенда.

1.2.2 Трансформаторные преобразователи

Наибольшее применение в авиационной автоматике нашли трансформаторные преобразователи (ТП), в которых изменения положения подвижного органа, воспринимающего измеряемое перемещение, вызывает изменение взаимной индукции (коэффициента взаимоиндуктивности) между двумя системами обмоток. К одной из них (первичной или обмотки возбуждения) подводиться переменное напряжение питания , а с другой (вторичной или сигнальной) обмотки снимается индуцированное в ней напряжение , зависящее от коэффициента взаимоиндукции.

Так же, как и ИП, ТП отличается конструктивным разнообразием.

Рассмотрим принцип работы на примере трехстержневого ТП (рис.4), состоящего из подвижного ротора 1, статора 2 с первичной обмоткой и двумя вторичными обмотками , соединенными встречно-последовательно.

Первичная обмотка создает магнитный поток , составляющие которого и перераспределяются примерно пропорционально площадям перекрытия ротором крайних стержней. Потоки и наводят во вторичных обмотках ЭДС, которые в силу встречного соединения вычитаются, следовательно, в среднем положении ротора и симметричной конструкции выходной сигнал равен нулю. Данный вариант схемы является дифференциальным по напряжению.

Эта же схема может быть дифференциальной по току, если подать питание на вторичные обмотки, а сигнал снимать с первичной. В этом случае обмотка будет сцеплена с потоками, направленными встречно в среднем стержне.

Проводимость воздушных зазоров определим без учета краевых потоков (т.е. потоков вне воздушного зазора), воспользовавшись геометрическими размерами ТП (рис.4), тогда

,

, , (1.2.16)

где – ширина воздушного зазора, одинаковая для всех зазоров.

Рис. 4. Трехстержневой трансформаторный преобразователь

Магнитный поток, созданный обмоткой возбуждения, замыкается помимо воздушных зазоров между средним и боковыми стержнями (потоки утечки). В первом приближении можно считать, что проводимость утечки не зависят от положения ротора.

Если составить для приведенной схемы замещения уравнения для магнитных и электрических контуров, то, решая их, получим выражение для выходного напряжения:

(1.2.17)

где – относительное изменение входного сигнала в пределах ;

– реактивное сопротивление, обусловленное потокосцеплением взаимоиндукции, замыкающимся через магнитопровод ротора;

– сопротивление, обусловленное потокосцеплением взаимоиндукции, замыкающимся вне магнитопровода ротора;

, – приведенные к вторичной обмотке реактивные сопротивления и

Рассмотренный тип ТП применяется для преобразования углового перемещения в электрический сигнал в пределах 7¸10° и обладает сравнительно линейной ФП в данном диапазоне.

Вследствие значительной краевой проводимости, меняющейся существенно нелинейно от положения ротора, этой конструкции присущ реактивный момент.

Для уменьшения реактивного момента и увеличения чувствительности чаще применяют круглый статор электромашинного типа, имеющий разное количество пазов. Конструктивная схема ТП, по существу включает несколько трехстержневых ТП. По отношению к трехстержневому ТП эта конструкция имеет значительные преимущества, т.к. обладает большой симметрией и меньшей чувствительностью к эксцентриситету ротора, удобством установки в приборы и значительно меньшими реактивными моментами вследствие существенного снижения краевых эффектов.

Для ТП, так же как и для ИП по тем же причинам, не удается получить нулевое значение выходного сигнала при среднем положении ротора. В лучших конструкциях ТП «нулевой» сигнал не превышает несколько десятков милливольт.

Основным преимуществом ТП по сравнению с индуктивным является отсутствие гальванической связи между цепями питания и выхода, а также возможность получения выходного сигнала большей величины, чем питающее напряжение.

ТП, так же как и ИП, представляет собой амплитудные модуляторы, поэтому для уменьшения динамической погрешности частота питающего напряжения должна быть в 10 – 20 раз больше, чем максимально возможная частота изменения входной величины.

Увеличение частоты питающего напряжения позволяет уменьшить как габариты преобразователей, так и реактивный момент (усилия).

1.3 Описание лабораторной установки

Схема лабораторной установки приведена на рис. 5. На передней панели смонтированы исследуемые ИП и ТП. С левой стороны преобразователей приведены их электрические схемы с необходимыми переключениями и клеммами. Переключатели П1 и П3 позволяют включать соответственно сопротивления нагрузок на выходы ИП (, кОм) и ТП (, кОм).

При среднем положении П1 и П3 нагрузки в выходных цепях преобразователя отключаются. Выключатель В2 служит для отключения одной половины дифференциального ИП с индуктивностями и от дифференциального трансформатора Тр. Клеммы 1, 2 (ИП) и 5, 6 (ТП) служат для включения внешнего вольтметра с большим внутренним сопротивлением ( кОм).

Перемещение якоря ИП измеряется микрометром 1. Ротор ТП соединен с ручкой 2, поворот которой контролируется угломером с пределами измерений 10°.

Цепь питания ИП и ТП состоит из входных клемм ЗГ 3, 4 к которым подается напряжение звукового генератора, контрольного вольтметра 1 и переключателя П2, которым подключается напряжение с ЗГ к дифференциальному трансформатору ИП (положение 1) или ТП (положение 2).

Коэффициент трансформации по напряжению ТР равен

.

Исследуемый ИП дифференциальный и служит для измерения линейных перемещений в диапазоне ±0.4 мм. Отличие его от вышерассмотренной схемы ИП (рис.2а) в том, что для удобства задания линейного перемещения полюса сердечников и якорь выполнены скошенными (рис. 6) и перемещение задается в плоскости, перпендикулярной плоскости расположения сердечников.

Рис. 5. Схема лабораторной установки

При перемещении якоря на величину воздушный зазор для одной половины ИП уменьшается на величину , а для другой – увеличивается на эту же величину, тогда соответственно получим приближенные значения сопротивлений воздушных зазоров:

(1.3.1)

(1.3.2)

где =0.5 мм – начальный воздушный зазор;

a=45° – угол скоса сердечника и якоря;

=5 мм – длина воздушного зазора;

=8 мм – ширина воздушного зазора.

Рис.6. Схема воздушного зазора ТП

Число витков индуктивностей и равно 1200 виткам. Исследуемый ТП электромашинного типа с 12-полюсным статором и 6-полюсным ротором. Данный тип ТП представляет совокупность 6-трехстержневых ТП, у которых крайние стержни общие, а, следовательно, и выходные обмотки. Из-за совмещения стержней и выходных обмоток сокращается их число на 1/3 и схема становиться дифференциальной по току и напряжению.

1.4 Порядок выполнения лабораторной работы

1. Изучить принцип действий ИП, ТП и ознакомиться с заданием лабораторной установкой. Зарисовать магнитные цепи исследуемых ИП и ТП, подготовить таблицы для экспериментальных ФП.

2. Включить в сеть ~220 В звуковой генератор, вольтметр к клеммам 1, 2 дать им прогреться 2-3 минуты.

3. Исследование ИП (Переключатель П2 в положение 1)

а) Определение ФП дифференциального ИП при номинальных условиях ( =10 В, =400 Гц):

– включить тумблером В2 вторую половину ИП

– установить якорь в среднее положение по минимальному значению ;

– перемещая якорь вправо, затем влево от среднего положения, снять ФП для обеих ветвей, при этом перемещение якоря влево от среднего положения изменяет фазу выходного напряжения на 180°.

Измерения производить при значениях нагрузки: кОм, кОм, .

б) Определение реальной ФП дифференциального ИП при отклонениях напряжения питания, частоты и нагрузки от номинальных значений на величину DU=-2 В; Df=50 Гц:

– установить , =400 Гц, кОм и снять ФП;

– установить , =450 Гц, кОм и снять ФП;

4. Исследование дифференциального ТП (переключатель П2 в положении 2).

а) Определение номинальной и реальной ФП ТП;

– включить вольтметр к клеммам 5, 6;

– номинальную и реальную ФП определить по методике в п.п. 3. согласно заданию, при этом учесть, что номинальное значение сопротивления нагрузки для ТП кОм, напряжение , а отклонение частоты D =50 ГЦ, напряжения ;

б) Определения зависимости чувствительности ТП от частоты питающего напряжения:

– установить номинальные значения напряжения и нагрузки;

– отклонить ротор ТП ручкой 2 (рис.5) от среднего положения (в любую сторону) на 5÷6°;

– изменяя частоту питающего напряжения от 250 до 800 Гц, через 50 Гц замерить выходные напряжения, при этом поддерживать постоянной ;

– определить чувствительность ТП для замеренных значений напряжений.

5. Определение величины и формы нулевого сигнала:

– включить осциллограф в сеть ~220 В, откалибровать его;

–включить выходы дифференциального ИП и ТП ко входу осциллографа, определить величину и форму нулевого сигнала при номинальных значениях , , .

6. Выключить приборы и лабораторную установку.

1.5 Требования к отчету

Отчет должен содержать:

1. цель работы;

2. схему установки;

3. результаты измерений, занесенные в таблицу;

4. графики, построенные по результатам измерений;

5. выводы.

1.6 Контрольные вопросы

1. Какой характер имеют погрешности у ИП и ТП при изменении напряжения питания, частоты?

2. Почему изменяются ФП у ИП, ТП при изменении сопротивления нагрузки?

3. Почему появляется нелинейность у ИП, ТП при больших входных сигналах?

4. Как уменьшить «нулевые» сигналы у ИП, ТП?

5. Чем объяснить изменение чувствительности у ТП при изменении частоты питающего напряжения?



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: