Гармонические движения и движения по окружности. Колебание под действием внешней силы

Косинус в решении уравнения (21.2) наводит на мысль, что гармоническое движение имеет какое-то отношение к движению по окружности. Это сравнение, конечно, искусственное, потому что в линейном движении неоткуда взяться окружности: грузик движется строго вверх и вниз. Можно оправдаться тем, что мы уже решили уравнение гармонического движения, когда изучали механику движения по окружности. Если частица движется по окружности с постоянной скоростью , то радиус-вектор из центра окружности к частице поворачивается на угол, величина которого пропорциональна времени. Обозначим этот угол (рис. 21.2). Тогда . Известно, что ускорение и направлено к центру. Координаты движущейся точки в заданный момент равны

.

Что можно сказать об ускорении? Чему равна -составляющая ускорения, ? Найти эту величину можно чисто геометрически: она равна величине ускорения, умноженной на косинус угла проекции; перед полученным выражением надо поставить знак минус, потому что ускорение направлено к центру:

. (21.7)

Иными словами, когда частица движется по окружности, горизонтальная составляющая движения имеет ускорение, пропорциональное горизонтальному смещению от центра. Конечно, мы знаем решения для случая движения по окружности: . Уравнение (21.7) не содержит радиуса окружности; оно одинаково при движении по любой окружности при одинаковой .

Рис. 21.2. Частица, движущаяся по кругу с постоянной скоростью.

Таким образом, имеется несколько причин, по которым следует ожидать, что отклонение грузика на пружинке окажется пропорциональным и движение будет выглядеть так, как если бы мы следили за -координатой частицы, движущейся по окружности с угловой скоростью . Проверить это можно, поставив опыт, чтобы показать, что движение грузика вверх-вниз на пружинке в точности соответствует движению точки по окружности. На рис. 21.3 свет дуговой лампы проектирует на экран тени движущихся рядом воткнутой во вращающийся диск иголки и вертикально колеблющегося груза. Если вовремя и с нужного места заставить грузик колебаться, а потом осторожно подобрать скорость движения диска так, чтобы частоты их движений совпали, тени на экране будут точно следовать одна за другой. Вот еще способ убедиться в том, что, находя численное решение, мы почти вплотную подошли к косинусу.

Рис. 21.3. Демонстрация эквивалентности простого гармонического движения и равномерного движения по окружности.

Здесь можно подчеркнуть, что поскольку математика равномерного движения по окружности очень сходна с математикой колебательного движения вверх-вниз, то анализ колебательных движений очень упростится, если представить это движение как проекцию движения по окружности. Иначе говоря, мы можем дополнить уравнение (21.2), казалось бы, совершенно лишним уравнением для и рассматривать оба уравнения совместно. Проделав это, мы сведем одномерные колебания к движению по окружности, что избавит нас от решения дифференциального уравнения. Можно сделать еще одни трюк - ввести комплексные числа, но об этом в следующей главе.

Нам остается рассмотреть колебания гармонического осциллятора под действием внешней силы. Движение в этом случае описывается уравнением

. (21.8)

Давайте подумаем, как будет вести себя грузик при этих обстоятельствах. Внешняя движущая сила может зависеть от времени каким угодно образом. Начнем с простейшей зависимости. Предположим, что сила осциллирует

. (21.9)

Обратите внимание, что - это не обязательно : будем считать, что можно изменять , заставляя силу действовать с разной частотой. Итак, надо решить уравнение (21.8) в случае специально подобранной силы (21.9). Каким будет решение (21.8)? Одно из частных решений (общим решением мы еще займемся) выглядит так:

, (21.10)

где постоянную еще надо определить. Иначе говоря, пытаясь найти решение в таком виде, мы предполагаем, что, если тянуть грузик взад и вперед, он в конце концов начнет качаться взад и вперед с частотой действующей силы. Проверим, может ли это быть. Подставив (21.10) в (21.9), получим

. (21.11)

Мы уже заменили на , потому что удобнее сравнивать две частоты. Уравнение (21.11) можно поделить на содержащийся в каждом члене косинус и убедиться, что при правильно подобранном значении выражение (21.10) будет решением. Эта величина должна быть такой:

. (21.12)

Таким образом, грузик колеблется с частотой действующей на него силы, но амплитуда колебания зависит от соотношения между частотой силы и частотой свободного движения осциллятора. Если очень мала по сравнению с , то грузик движется вслед за силой. Если же чересчур быстро менять направление толчков, то грузик начинает двигаться в противоположном по отношению к силе направлении. Это следует из равенства (21.12), которое говорит нам, что величина отрицательна, если больше собственной частоты гармонического осциллятора . (Мы будем называть собственной частотой гармонического осциллятора, а - приложенной частотой.) При очень высокой частоте знаменатель становится очень большим и грузик практически не движется.

Найденное нами решение справедливо только в том случае, когда уже установилось равновесие между осциллятором и действующей силой; это происходит после того, как вымрут другие движения. Эти вымирающие движения называют переходным откликом на силу , а движение, описываемое (21.10) и (21.12), - равновесным откликом.

Приглядевшись к формуле (21.12), мы заметим любопытную вещь: если частота почти равна , то приближается к бесконечности. Таким образом, если настроить силу «в лад» с собственной частотой, отклонения грузика достигнут гигантских размеров. Об этом знает всякий, кому когда-либо приходилось раскачивать ребенка на качелях. Это довольно трудно сделать, если закрыть глаза и беспорядочно толкать качели. Но если найти правильный ритм, то раскачать качели легко, однако, как только мы опять собьемся с ритма, толчки начнут тормозить качели и от такой работы будет мало проку.

Если частота будет в точности равна , то амплитуда должна стать бесконечной, что, разумеется, невозможно.

Лекция № 3 (тезисы)


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: