Несовместимыми являются суждения А и E, А и О, Е и I, которые одновременно не могут быть истинными. Различают два вида несовместимости: противоположность и противоречие.
1. Противоположными (контрарными) являются суждения А и Е, которые одновременно не могут быть истинными, но могут быть одновременно ложными. Истинность одного из противоположных суждений определяет ложность другого. Например, истинность суждения «Все офицеры — военнослужащие» определяет ложность суждения «Ни один офицер не является военнослужащим». При ложности же одного из противоположных суждений другое остается неопределенным — оно может быть как истинным, так и ложным. Так, например, при ложности суждения «Все птицы улетают зимой в теплые края» ему противоположное «Ни одна птица не улетает зимой в теплые края» тоже оказывается ложным. В другом случае при ложности суждения «Ни один судья не является юристом» ему противоположное «Все судьи — юристы» будет истинным.
2. Противоречащими (контрадикторными) являются суждения А и О, Е и I, которые одновременно не могут быть ни истинными, ни ложными.
Для противоречия характерна строгая, или альтернативная несовместимость: при истинности одного из суждений другое всегда будет ложным; при ложности первого второе будет истинным. Отношения между такими суждениями регулируются законом исключенного третьего. Если А признается истинным, то О будет ложным; при истинности Е будет ложным I. И наоборот: при ложности А будет истинным О; а при ложности Е будет истинным.
Например, если признается истинным суждение «Все принципиальные люди признают свои ошибки», то ложным будет ему альтернативное: «Некоторые принципиальные люди не признают своих ошибок».
Следует отметить, что несовместимые единичные суждения могут находиться лишь в отношении противоречия и не могут находиться в отношении противоположности, ибо каждому отдельному предмету может быть либо присущ, либо не присущ определенный признак. Например, суждения «Суд вынес обвинительный приговор по делу Л.» и «Суд не вынес обвинительного приговора по делу Л.» находятся в отношении противоречия: если первое суждение истинно, то признается ложность второго, и наоборот.
Сложные суждения.
Сложные суждения также могут быть сравнимыми и несравнимыми.
Несравнимые — это суждения, которые не имеют общих пропозициональных переменных. Сравнимые — это суждения, которые имеют одинаковые пропозиционные переменные (составляющие) и различаются логическими связками, включая отрицание. Например, сравнимыми являются следующие два суждения: «Норвегия или Швеция имеют выход в Балтийское море» (р v q); «Ни Норвегия, ни Швеция не имеют выхода в Балтийское море» (ù р Ù ù q). Хотя эти суждения различны по логической форме (первое из них — дизъюнктивное суждение, а второе — конъюнкция отрицаний, вместе с тем они сравнимы, поскольку включают одинаковые составляющие (р и q).
Сложные сравнимые суждения могут быть совместимыми и несовместимыми.
Отношение совместимости.
К совместимым относятся такие сравнимые суждения, которые одновременно могут быть истинными. Как и в случае простых суждений, различают три вида совместимости сложных суждений:
эквивалентность, частичная совместимость и подчинение.
1. Эквивалентные — это суждения, которые принимают одни и те значения, т.е. одновременно являются либо истинными, либо ложными. Отношение эквивалентности позволяет выражать одни сложные суждения через другие — конъюнкцию через дизъюнкцию или импликацию, и наоборот. Приведем четыре известные эквивалентности, которые являются законами логики.
1) Выражение конъюнкции через дизъюнкцию:
-ù(АÙВ) º ùAvùB
2) Выражение дизъюнкции через конъюнкцию:
- ù(A v В) º ùА Ù ùВ
Эти две эквивалентности называются законами де Моргана.
3) Выражение импликации через конъюнкцию:
(А ®В) º ù(А Ù ùВ)
4) Выражение импликации через дизъюнкцию:
(А®В) º ùAvB
2. Частичная совместимость характерна для суждений, которые могут быть одновременно истинными, но не могут быть одновременно ложными.
3. Подчинение между суждениями имеет место в том случае, когда при истинности подчиняющего подчиненное всегда будет истинным. Отношение логического подчинения, позволяющее по истинности подчиняющего суждения определить истинность подчиненного,
составляет основу фундаментального в науке логики понятия логического следования, регулирующего все виды рассуждений.