Отношение несовместимости. Несовместимыми являются суждения А и E, А и О, Е и I, которые одновременно не могут быть истинными

Несовместимыми являются суждения А и E, А и О, Е и I, которые одновременно не могут быть истинными. Различают два вида несовместимости: противоположность и противоречие.

1. Противоположными (контрарными) являются суждения А и Е, которые одновременно не могут быть истинными, но могут быть одновременно ложными. Истинность одного из противоположных суждений определяет ложность другого. Например, истинность суждения «Все офицеры — военнослужащие» определяет ложность суждения «Ни один офицер не является военнослужащим». При ложности же одного из противоположных суждений другое остается неопреде­ленным — оно может быть как истинным, так и ложным. Так, например, при ложности сужде­ния «Все птицы улетают зимой в теплые края» ему противополож­ное «Ни одна птица не улетает зимой в теплые края» тоже оказыва­ется ложным. В другом случае при ложности суждения «Ни один судья не является юристом» ему противоположное «Все судьи — юристы» будет истинным.

2. Противоречащими (контрадикторными) являются сужде­ния А и О, Е и I, которые одновременно не могут быть ни истин­ными, ни ложными.

Для противоречия характерна строгая, или альтернативная не­совместимость: при истинности одного из суждений другое всегда будет ложным; при ложности первого второе будет истинным. Отно­шения между такими суждениями регулируются законом исключен­ного третьего. Если А признается истинным, то О будет ложным; при истинности Е будет ложным I. И наоборот: при ложности А будет истинным О; а при ложности Е будет истинным.

Например, если признается истинным суждение «Все принципи­альные люди признают свои ошибки», то ложным будет ему альтер­нативное: «Некоторые принципиальные люди не признают своих ошибок».

Следует отметить, что несовместимые единичные суждения могут находиться лишь в отношении противоречия и не могут находиться в отношении противоположности, ибо каждому от­дельному предмету может быть либо присущ, либо не присущ оп­ределенный признак. Например, суждения «Суд вынес обвинитель­ный приговор по делу Л.» и «Суд не вынес обвинительного приговора по делу Л.» находятся в отношении противоречия: если первое суждение истинно, то признается ложность второго, и на­оборот.

Сложные суждения.

Сложные суждения также могут быть сравнимыми и несравни­мыми.

Несравнимые это суждения, которые не имеют общих пропо­зициональных переменных. Сравнимые это суждения, которые имеют одинаковые пропозиционные переменные (составляющие) и различаются логически­ми связками, включая отрицание. Например, сравнимыми являются следующие два суждения: «Норвегия или Швеция имеют выход в Балтийское море» v q); «Ни Норвегия, ни Швеция не имеют вы­хода в Балтийское море» (ù р Ù ù q). Хотя эти суждения различны по логической форме (первое из них — дизъюнктивное суждение, а второе — конъюнкция отрицаний, вместе с тем они сравнимы, по­скольку включают одинаковые составляющие и q).

Сложные сравнимые суждения могут быть совместимыми и несовместимыми.

Отношение совместимости.

К совместимым относятся такие сравнимые суждения, кото­рые одновременно могут быть истинными. Как и в случае простых суждений, различают три вида совместимости сложных суждений:

эквивалентность, частичная совместимость и подчинение.

1. Эквивалентные — это суждения, которые принимают одни и те значения, т.е. одновременно являются либо истинными, либо ложными. Отношение эквивалентности позволяет выражать одни сложные суждения через другие — конъюнкцию через дизъюнкцию или имп­ликацию, и наоборот. Приведем четыре известные эквивалентности, которые являются законами логики.

1) Выражение конъюнкции через дизъюнкцию:

-ù(АÙВ) º ùAvùB

2) Выражение дизъюнкции через конъюнкцию:

- ù(A v В) º ùА Ù ùВ

Эти две эквивалентности называются законами де Моргана.

3) Выражение импликации через конъюнкцию:

(А ®В) º ù(А Ù ùВ)

4) Выражение импликации через дизъюнкцию:

(А®В) º ùAvB

2. Частичная совместимость характерна для суждений, кото­рые могут быть одновременно истинными, но не могут быть одно­временно ложными.

3. Подчинение между суждениями имеет место в том случае, когда при истинности подчиняющего подчиненное всегда будет истинным. Отношение логического подчинения, позволяющее по истиннос­ти подчиняющего суждения определить истинность подчиненного,

составляет основу фундаментального в науке логики понятия логи­ческого следования, регулирующего все виды рассуждений.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: