Билет 11. 1.Назначение методики ОГТ МОВ, эффективность методики ОГТ МОВ

1.Назначение методики ОГТ МОВ, эффективность методики ОГТ МОВ. Системы наблюдений, применяемых при ОГТ. Расчёт характеристик направленности ОГТ и их использование для выбора систем наблюдений.

Основой метода общей глубинной точки являются системы многократных перекрытий, группировка трасс в сейсмограммы ОГТ по принципу их принадлежности общей средней точке (середина расстояния источник-приёмник и ввод кинематических и статических поправок, последующее суммирование сигналов одноимённой отражённой волны, записанной на данной сейсмограмме ОГТ. Достоинствами МОГТ являются: индивидуальность каждой сейсмограммы ОГТ, сформированной из трасс сейсмограмм общего пункта возбуждения (ОПВ), не повторяющихся ни в одной другой сейсмограмме ОГТ; симметричность годографа ОГТ отражённой волны относительно данной средней точки и допустимость его гиперболической аппроксимации; избыточность системы многократных перекрытий. Эти свойства играют определяющую роль в решении основной задачи – ослабления регулярных (многократных, обменных) и нерегулярных волн-помех.

На рис. приведена принципиальная схема наблюдений, иллюстрирующая порядок выборки каналов, удовлетворяющих условию единства общей средней точки. Точки приёма 2, 3. 4, 5, 6 смещены относительно начала координат (средней точки) на Dх, 2Dх, 3Dх, 4Dх, 5Dх, а соответствующие им точки возбуждения, обозначенные цифрами II, III, IV, V, VI - на -Dх, -2Dх, -3Dх, -4Dх, -5Dх, В точке приёма 1 (центр системы – средняя точка) источник и приёмник совпадают. Набор трасс образует сейсмограмму ОГТ, а прокоррелированные на ней импульсы отражённых волн – годографы ОГТ. Длина базы наблюдений в большинстве геолого-геофизических ситуаций 2,5-3 км, редко превышает 4,5 км. Для преобразования сейсмограмм ОГТ во временной разрез в каждую трассу вводят кинематические поправки. При этом оси синфазностей

Регулярных волн-помех недоспрямляются, приобретая форму кривой второго порядка. В процессе суммирования трасс, в которые введены кинематические поправки, однократно-отражённые волны складываются в фазе и в результате усиливаются, а регулярные волны-помехи складываются с фазовыми сдвигами, что приводит к их ослаблению. Системой наблюдения называют взаимное расположение ПВ и ПП. Система бывают: 1) линейные – когда ПВ и ПП располагаются на одной линии; 2) площадные – когда ПВ и ПП располагаются по площади. Линейные:1) центральная – когда ПВ расположен симметрично в центре установки

2) фланговая – когда ПВ размещён на концах базы: а) левофланговая б) правофланговая

Параметры схемы наблюдений определяются сейсмогеологическими условиями, задачами работ и техническими возможностями исполнителей. К параметрам схемы наблюдений относятся: величина базы наблюдений, положение пункта взрыва относительно базы приёма, минимальное (хmin – вынос пункта взрыва) и максимальное (хmax) удаления сейсмоприёмников от источников, кратность наблюдений. Характеристика направленности системы ОГТ (Р) представляет собой зависимость чувствительности системы ОГТ от кинематических и динамических параметров, суммированных по принципу ОГТ (частоты f и времени tmax). Характеристика служит для борьбы с волнами-помехами глубинного характера (кратно отражённые волны). Расчёт характеристики начинается с расчёта остаточного годографа – годограф волны-помехи глубинного характера, полученный после введения кинематической поправки. Рассчитывается по формуле:

, где h 2, v 2 – глубина и скорость до целевого горизонта; x – расстояние между с/п от 0 до xmax из системы наблюдений; v 1 – скорость полнократно отражённой волны, соответствующая времени ; время определяется по графику v ср= f (t 0). По годографу определяется относительная стрела прогиба d: .

Рассчитать параметр di (d i= t i/D t max) по формуле: , где n – кратность системы; i – порядковый номер точки расчёта 0£ i £(n -1). Характеристика направленности системы ОГТ Р = f (f D t max) рассчитывается по формуле:

Расчёт характеристики направленности площадной системы ОГТ. Исходным параметром для построения системы является расстояние взрыв-прибор, которое обозначается l i. Количество этих значений равно n xy. По остаточному годографу полнократно отражённой волны определить значения t I, соответствующие значениям l i.Рассчитать Характеристику направленности системы по формуле:

2. Способы измерения геомагнитного поля. Принцип свободной прецессии протонов.

Методы элементов земного магнитного поля подразделяются на динамические и статические.

Динамическими называются методы, при которых наблюдается движение, а непосредственно измеряемой величиной является время (частота).

Статическими называются методы, при которых наблюдаемой величиной является положение равновесия и непосредственно измеряемой величиной лилейное или угловое смещение.

К динамическим методам измерения составляющих магнит­ного поля относятся наблюдения над качанием магнита, а также наблюдения частоты прецессии вектора ядерного намагничивания. Статические методы измерения составляющих земного магнит­ного поля заключаются в уравновешивании момента вращения магнитной стрелки, обусловленного действием земного магнитного поля, моментом силы тяжести, моментом кручения нити или пружины.

Измерения силы тяжести и составляющих магнитного поля Земли подразделяются на абсолютные и относительные.

Абсолютными называются методы, при которых измеряется полное значение со­ставляющих магнитного полей.

Относительными называются методы определения разности составляю­щих магнитного поля в данном пункте и в не­котором другом (исходном).

Принцип свободной прецессии протонов.

На практике применяются ядерно-прецессионные или просто ядерные магнитометры. Сущность ядерного (протонного) метода состоит в точном определении частоты прецессии вектора ядерного намагничения вокруг вектора земного магнитного поля после выклю­чения дополнительного, искусственно создаваемого сильного маг­нитного поля.

Протоны обладают механическим моментом Р (или спином) и магнитным моментом µ.

Находящийся в магнитном поле протон прецессирует (т.е. совершает круговые конические вращения) вокруг силовых линий магнитного поля. Частота этих колебаний (или частота свободной прецессии протона) определяется по формуле:

ω=γ*Т,

где γ – герромагнитное отношение протона, равное отношению магнитного момента протона к механическому.

γ=µ/Р

На принципе прецессии основана одна из методик измерения напряженности магнитного поля.

В качестве материала для создания эффекта прецессии исполь­зуются богатые протонами жидкости (вода, спирт, бензол и др.).

При помощи катушки, внутрь которой помещается сосуд с жидкостью, создается сильное магнитное поле Н, направленное приблизительно перпендику­лярно к направлению вектора земного поля Т. В этом случае век­торы ядерного намагничения ориентируются в направлении, близ­ком к направлению поля Н. После мгновенного выключения поля Н вектор ядерного намагничения будет стремиться ориентироваться по направлению поля Т, совершая за время релаксации (процесса перехода из направления Н в направление Т) движение вокруг вектора Т.

Вектор ядерного намагничения, прецессируя вокруг вектора Т, наводит переменную ЭДС в приемной катушке, окружающей сосуд с жидкостью. В применяемой аппаратуре катушка возбужде­ния одновременно является и приемной катушкой. При этом частота прецессии вектора ядерного намаг­ничения будет равна частоте наведенной переменной ЭДС. Индук­тируемая ЭДС убывает за время релаксации по экспоненциаль­ному закону. Однако, поскольку время релаксации исчисляется долями секунды, этого времени оказывается достаточно для измерения частоты с необходимой точностью.

Ядерный магнитометр состоит из следующих основных узлов:

1) датчика, представляющего собой тороидальный сосуд, на­полненный жидкостью и окруженный катушкой;

2) радиоканала, в котором происходит усиление сигнала, умно­жение частоты сигнала, фильтрация и смешение сигналов от дат­чика и счетного устройства;

3) счетного устройства, представляющего собой кварцевый ге­нератор для получения строго фиксированного интервала счета;

4) регистрирующего устройства, перерабатывающего пришед­шие сигналы и печатающего результат

5) источников питания установки.

Основные достоинства ядерного магнитометра заключаются в из­мерении абсолютного значения Т при практически стабильном нуле, высокой чувствительности и точности измерений, а также в отсутствии необходимости точной ориентировки датчика, влияний температуры, влажности, давления, ударных нагрузок и вибраций.

Недостатком ядерных магнитометров является продолжительность измерений, порядка 1—2 сек, затрачиваемых на поляризацию ядер, и измерение частоты прецессии. Это не позволяет применять существующие конструкции ядерных магнитометров для непрерывных измерений при воздушных съемках, так как за 1—2 сек самолет проходит 100—150 м. Поэтому при воздушных съемках в настоящее время ядерные магнитометры или ядерные приставки используются для периоди­ческих измерении абсолютных значений напряженности магнитного поля.

3. Решение Обратных задач сейсморазведки

Обратная задача сейсморазведки - заключается в определения сейсмологического строения изучаемой территории по наблюденному полю упругих волн. Обратные задачи решаются при интерпретации. Интерпретация это получение модели среды (например виде структурных карт, интервальных скоростей, карт t0 и т.д), т.е. обратная задача это получение модели.

При решении обратной задачи сейсморазведки исходными данными для анализа являются: постановка задачи, априорная информация о сейсмической модели среды и экспериментальный материал. Постановка обратной задачи определяется целями сейсморазведочных работ и техническими возможностями их выполнения, составом, структурой и качеством полученного полевого материала. Априорная информация содержит собранные сведения общего и частного характера, необходимые для решения поставленной задачи. Эта информация касается геологического строения, глубинных и поверхностных сейсмогеологических условий, данных о системе наблюдений, сведений о зоне малых скоростей и т.п. Исходя из поставленной задачи, на основе априорных данных выбирают подходящие модель среды и модель сейсмограммы.

Большинство обратных задач сейсморазведки решается на использовании эффективных моделей среды.

Если построение синтетической сейсмограммы есть расчет сейсмотрассы по промыслово-геофизическим данным, то построение диаграммы псевдоакустического каротажа - это расчет каротажной кривой по информации, заключенной в сейсмотрассе. Уравнение расчета коэффициента отражения можно решить относительно акустической жесткости нижней среды:

где Vjρj - акустическая жесткость в j пласте; V - скорость; ρ - плотность; К - коэффициент отражения; Si - импульсная сейсмограмма;
А - амплитуда сейсмического сигнала.

Для проведения преобразования необходимо помимо сейсмограммы иметь информацию об акустической жесткости первого слоя Voρo и амплитуду сейсмического сигнала A.

Акустический каротаж и импульсная сейсмограмма являются трансформантами относительно друг друга. При некоторых допущениях операция свертки импульсной трассы с сейсмическим сигналом аналогична фильтрации акустического каротажа.

При тщательном проведении полевых работ и обработки сейсмического материала удается получить сейсмические трассы, удовлетворяющие модели сейсмограммы, принятой для пересчета по вышепредставленной формуле (трасса сформирована однократными отражениями, ее амплитуда скорректирована с учетом изменений, вызванных расхождением фронта сейсмической волны, возможных эффектов поглощения и т.д., форма сейсмического сигнала близка к нуль-фазовой). В этом случае по сейсмической трассе можно восстановить характер изменения акустической жёсткости с глубиной. Для сопоставления результата преобразований с данными АК необходимо перейти от акустической жесткости к значениям скорости. Этот переход может быть сделан на основе учета информации об изменении плотности с глубиной либо на основе использования корреляционных зависимостей между изменениями скорости и плотности.

После коррекции результата инверсии сейсмической трассы на изменение плотности и добавления низкочастотной компоненты скорости получаем кривую синтетического каротажа в координатах скорости и времени. Получаемая таким образом кривая скорости называется кривой псевдоакустического каротажа (ПАК). Кривая псевдоакустического каротажа представляет информацию о разрезе, содержащуюся в сейсмических данных, в виде, удобном для сопоставления с результатами скваженных наблюдений.

Целью построения диаграмм псевдоакустического каротажа является прогнозирование акустических свойств геологического разреза, с которыми связаны такие параметры осадочных пород, как песчанистость, пористость, флюидонасыщенность и т.д.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: