Студопедия
МОТОСАФАРИ и МОТОТУРЫ АФРИКА !!!


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

Cпособы определения площадей в геодезии




Определение площадей земельных участков является одним из важнейших видов геодезических работ для целей земельного кадастра.

В зависимости от хозяйственной значимости земельных участков, наличия планово-топографического материала, топографических условий местности и требуемой точности применяют различные способы определения площадей.

1. Аналитический, когда площадь вычисляется по результатам измерений линий на местности, по результатам измерений линий и углов на местности или по их функциям (координатам вершин фигур).

2. Графический, когда площадь вычисляется по результатам измерений линий или координат на плане (карте). Графические способы.Участок на плане разбивают на простые геометрические фигуры (обычно – треугольники), элементы которых измеряют с помощью измерителя и поперечного масштаба, а площади вычисляют по известным формулам и суммируют.

3. Механический, когда площадь определяется по плану с помощью специальных приборов (планиметров) или приспособлений (палеток). Иногда эти способы применяют комбинированно, например, часть линейных величин для вычисления площади определяют по плану, а часть берут из результатов измерений на местности.

Площади можно также определить на ЭВМ по цифровой модели местности по специальной программе.

При аналитическом способе определения площадей применяются формулы геометрии, тригонометрии и аналитической геометрии. При определении площадей небольших участков (для учета площадей, занятых строениями, усадьбами, площадей вспашки, посева) участки разбиваются на простейшие геометрические фигуры, преимущественно треугольники, прямоугольники, реже трапеции. В этом случае площади участков определяются как суммы площадей отдельных фигур, вычисляемых по линейным элементам - высотам и основаниям.


Рис. 23.1. Геометрические фигуры для определения площадей участков (а, б)

Если по границам участка выполнены геодезические измерения, то площадь всего участка или его части можно вычислить по формулам, приведенным применительно к следующим фигурам участков (рис. 23.1).

Треугольник (рис. 23.1, а). Площадь треугольника определяется по сторонам l1 и l2, углу β2, заключенному между ними, по формуле

P =

(l1·l2·sinβ2).(23.1)

Четырехугольник (рис. 23.1, б). В зависимости от элементов, известных в четырехугольнике, могут быть использованы различные формулы для расчета, в связи с чем приведем пример, характеризующий это многообразие. Пусть в четырехугольнике измерены все стороны и один угол при вершине 2. В таком случае площадь треугольника 1 - 2 - 3 может быть вычислена по формуле (23.1). При этом полезно вычислить длину l1-3, используя теорему косинусов




l1-3 = √

+ l2 -2·l1·l2·cosβ.(23.2)

Площадь треугольника 1 - 3 - 4 может быть вычислена по формуле

P = √S·(S - l3)·(S - l4)·(S - l1-3),(23.3)

где S - полупериметр, равный

S =

(l3 + l4 + l1-3).

Общая площадь четырехугольника будет равна:

P =

l1·l2

·sinβ2 + √S·(S - l3)·(S - l4)·(S - l1-3).(23.4)





Дата добавления: 2015-04-08; просмотров: 15100; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше... 9182 - | 7321 - или читать все...

Читайте также:

  1. I. Дайте определения следующих понятий
  2. I. Дайте определения следующих правовых категорий
  3. I. Дайте определения следующих правовых категорий. 1. Финансовые правоотношения (дать определение)
  4. III. Принцип целеполагания и творческого самоопределения
  5. А) Общие определения
  6. Алгоритм действий. 1. В предложении найти определения (вопрос какой?) и обстоятельства (что делая?
  7. Алгоритм обоснования энергетической ценности и нутриентного состава рациона питания на основе определения физиологической потребности организма в энергии и пищевых веществах
  8. Алгоритм определения ошибки
  9. Алгоритм определения синтаксической функции
  10. Амортизация основных фондов. Основные понятия. Виды амортизации. Способы начисления годовой амортизации. Идея определения годовой нормы и суммы амортизационных отчислений
  11. Анализ эффективности использования площадей торговой организации


 

3.227.2.246 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.002 сек.