Устройство

На рисунке: 1 - вал, 2,6 - подшипники, 3,8 - подшипниковые щиты, 4 - лапы, 5 - кожух вентилятора, 7 - крыльчатка вентилятора, 9 - короткозамкнутый ротор, 10 - статор, 11 - коробка выводов.

Основными частями асинхронного двигателя являются статор (10) и ротор (9).

Статор имеет цилиндрическую форму, и собирается из листов стали. В пазах сердечника статора уложены обмотки статора, которые выполнены из обмоточного провода. Оси обмоток сдвинуты в пространстве относительно друг друга на угол 120°. В зависимости от подаваемого напряжения концы обмоток соединяются треугольником или звездой.

Роторы асинхронного двигателя бывают двух видов: короткозамкнутый и фазный ротор.

Короткозамкнутый ротор представляет собой сердечник, набранный из листов стали. В пазы этого сердечника заливается расплавленный алюминий, в результате чего образуются стержни, которые замыкаются накоротко торцевыми кольцами. Эта конструкция называется "беличьей клеткой". В двигателях большой мощности вместо алюминия может применяться медь. Беличья клетка представляет собой короткозамкнутую обмотку ротора, откуда собственно название.

Фазный ротор имеет трёхфазную обмотку, которая практически не отличается от обмотки статора. В большинстве случаев концы обмоток фазного ротора соединяются в звезду, а свободные концы подводятся к контактным кольцам. С помощью щёток, которые подключены к кольцам, в цепь обмотки ротора можно вводить добавочный резистор. Это нужно для того, чтобы можно было изменять активное сопротивление в цепи ротора, потому что это способствует уменьшению больших пусковых токов. Подробнее о фазном роторе можно прочитать в статье -асинхронный двигатель с фазным ротором.

Расчет магнитной цепи выполняется с целью определения н. с. (или намагничивающего тока ) первичной обмотки (обмотки статора), под действием которой возникает магнитный поток, индуктирующий в этой обмотке э. д. с. ; примерно равную номинальному напряжению ( где для двигателя - см. раздел).
В силу симметрии магнитной цепи в поперечном сечении (рис. 16-33) и равенства магнитных потоков каждой пары полюсов расчет выполняется обычно на один полюс.
Магнитная цепь рассчитывается по магнитному потоку при холостом ходе и номинальном напряжении (магнитный поток при номинальной нагрузке на 1-2% меньше, чем при холостом ходе):

где - номинальное фазное напряжение;

- коэффициент, определяемый по рис. 16-34 в соответствии с предварительно намеченным коэффициентом насыщения зубцового слоя (обычно ); - обмоточный коэффициент для основной гармонической (см. раздел п. 3 в).
Магнитная цепь рассчитывается на основе закона полного тока для средней магнитной линии (см. рис. 16-33)

где Н - напряженность магнитного поля; dl - элементарный участок магнитной линии; - амплитуда основной гармонической н. с, обусловленная намагничивающим током (см. раздел п. 1); - результирующая н. с. на один полюс.
Для облегчения практических расчетов линейный интеграл заменяют суммой магнитных напряжений пяти участков, на которые разбивают магнитную цепь, исходя из предположения, что в пределах каждого участка напряженность магнитного поля постоянна:

где - воздушный зазор (см. рис. 16-33); - зубцовая зона статора; - ярмо статора; - зубцовая зона ротора; - ярмо ротора.
Максимальная индукция в воздушном зазоре

где определяется по рис. 16-34 в соответствии с коэффициентом , предварительно намеченным при расчете потока Ф (см. выше).

Уравнения напряжений асинхронного двигателя

Обмотка ротора асинхронного двигателя не имеет электрической связи с обмоткой статора. Между ними существует только магнитная связь и энергия из обмотки статора передается в обмотку ротора магнитным полем. В этом отношении асинхронная машина аналогична двухобмоточному трансформатору: обмотка статора является первичной, а обмотка ротора - вторичной.

Так же как и в трансформаторе, в асинхронной машине имеется результирующий магнитный поток Ф, сцепленный как с обмоткой статора, так и с обмоткой ротора, и два потока рассеяния: - поток рассеяния обмотки статора и - поток рассеяния обмотки ротора.

Амплитуда результирующего магнитного потока , вращающегося с частотой n1, наводит в фазах неподвижной обмотки статора ЭДС, действующее значение которой равно

.

Магнитный поток рассеяния наводит в фазах обмотки статора ЭДС рассеяния, значение которой определяется падением напряжения на индуктивном сопротивлении рассеяния фазы обмотки статора

,

где - индуктивное сопротивление рассеяния фазы обмотки статора.

Уравнение напряжения фазы обмотки статора, включенной в сеть с напряжением , запишется:

,

где - падение напряжения на активном сопротивлении фазы обмотки статора .

Окончательная запись уравнения не отличается от уравнения напряжения для первичной обмотки трансформатора

.

Результирующий магнитный поток Ф, обгоняя вращающийся ротор, индуктирует в фазе обмотки ротора ЭДС

где - частота ЭДС в фазе обмотки вращающегося ротора; - ЭДС, наведенная в фазе обмотки неподвижного ротора.

Магнитный поток рассеяния наводит в фазах обмотки ротора ЭДС рассеяния, значение которой определяется падением напряжения на индуктивном сопротивлении фазы этой обмотки:

,

где - индуктивное сопротивление рассеяния фазы обмотки ротора при неподвижном роторе.

Уравнение напряжения для фазы обмотки ротора

,

где - активное сопротивление фазы обмотки ротора.

Окончательная запись уравнения:

.

2.7. Уравнения МДС и токов асинхронного двигателя

Результирующий магнитный поток в асинхронном двигателе создается совместным действием МДС обмоток статора и ротора

,

где - магнитное сопротивление магнитной цепи двигателя; - результирующая МДС, равная МДС обмотки статора в режиме холостого хода:

,

где I0- ток холостого хода в фазе обмотки статора.

МДС обмоток статора и ротора на один полюс при работе двигателя под нагрузкой равны

;

,

где - число фаз обмотки ротора; - обмоточный коэффициент обмотки ротора.

При изменении нагрузки на валу двигателя меняются токи в статоре I1 и роторе I2. Результирующий магнитный поток при этом сохраняется неизменным, так как напряжение, подведенное к обмотке статора, неизменно () и почти полностью уравновешивается ЭДС E1 обмотки статора:

.

Так как ЭДС E1 пропорциональна результирующему магнитному потоку, то он при изменении нагрузки остается неизменным. Этим и объясняется то, что, несмотря на изменения МДС F1 и F2, результирующая МДС остается неизменной

, .

Разделив это равенство на , определим уравнение токов асинхронного двигателя

,

где - ток ротора, приведенный к обмотке статора.

Окончательное уравнение токов асинхронного двигателя

.

Из этого уравнения следует, что ток статора в асинхронном двигателе имеет две составляющие: - намагничивающую (почти постоянную) составляющую () и - переменную составляющую, компенсирующую МДС обмотки ротора.

Таким образом, ток обмотки ротора оказывает на магнитную систему двигателя такое же размагничивающее влияние, как и ток вторичной обмотки трансформатора при активно-индуктивной нагрузке.

11. Потери и КПД АД. Электромагнитный момент и механические характеристики АД. Характеристики АД при изменении напряжения сети и активного сопротивления обмотки ротора.

Преобразование энергии в асинхронном двигателе, как и в других электрических машинах, связано с потерями энергии. Эти потери делятся на механические, магнитные и электрические.

Из сети в обмотку статора поступает мощность Р1. Часть этой мощности расходуется на покрытие магнитных потерь в сердечнике статора рс1, а также в обмотке статора на покрытие электрических потерь, обусловленных нагревом обмотки,

рэ1 = m1I12r1.

Оставшаяся часть мощности при помощи магнитного потока передается на ротор и поэтому называется электромагнитной мощностью

Рэм = Р1 - (рc1 + рэ1).

Часть электромагнитной мощности затрачивается на покрытие электрических потерь в обмотке ротора

рэ2 = m2I22r2 = m1I’22r’2.

Остальная часть электромагнитной мощности преобразуется в механическую мощность двигателя, называемую полной механической мощностью

Р’2 = Рэм - рэ2.

Таким образом, полная механическая мощность

Р’2 = m1I’22r’2[(1-s)/s] = рэ2[(1-s)/s].

Выполнив несложные преобразования, получим

рэ2[(1-s)/s] = Рэм - рэ2 и

рэ2= sРэм,

т.е. мощность электрических потерь в роторе пропорциональна скольжению. Поэтому работа асинхронного двигателя более экономична при малых скольжениях.

Следует отметить, что в роторе двигателя возникают также и магнитные потери, но ввиду небольшой частоты тока ротора (f2 = f1s) эти потери настолько малы, что ими обычно пренебрегают.

Механическая мощность на валу двигателя Р2 меньше полной механической мощности Р’2 на величину механических рмех и добавочных рдпотерь

Р2 = Р’2 - (рмех + рд).

Механические потери в асинхронном двигателе обусловлены трением в подшипниках и трением вращающихся частей о воздух. Добавочные потери вызваны наличием в двигателе полей рассеяния и пульсацией поля в зубцах ротора и статора.

Таким образом, полезная мощность асинхронного двигателя

Р2 = Р1 - ∑р,

где ∑р – сумма потерь в асинхронном двигателе,
∑р = рс1 + рэ1 + рэ2+ рмех + рд.

Коэффициент полезного действия асинхронного двигателя

η = Р2/ Р1 = 1 - ∑р/ Р1.

Благодаря отсутствию коллектора КПД асинхронных двигателей выше, чем у двигателей постоянного тока. В зависимости от величины мощности асинхронных двигателей их КПД при номинальной нагрузке может быть в пределах от 83 до 95% (верхний предел соответствует двигателям большой мощности).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: