Структура белковой молекулы

Лекция 2. Органические вещества. Белки

Органические вещества.

О рганические соединения составляют в среднем 20–30% массы клетки живого организма. К ним относятся биологические полимеры – белки, нуклеиновые кислоты и полисахариды, а также жиры и ряд низкомолекулярных органических веществ – аминокислоты, простые сахара, нуклеотиды и т.д. Полимеры – сложные разветвленные или линейные молекулы, при гидролизе распадающиеся до мономеров. Если полимер состоит из одного вида мономеров, то такой полимер называют гомополимером, если в состав полимерной молекулы входят различные мономеры – то это гетерополимер. Если группа различных мономеров в полимерной молекуле повторяется (А,Б,В,А,Б,В,А,Б,В) – это регулярный гетерополимер, если нет повторения определенной группы мономеров – гетерополимер нерегулярный.

 
 


Белки.

Из органических веществ клетки по количеству и значению на первом месте стоят белки. Белки, или протеины (от греч. протос – первый, главный) – высокомолекулярные гетерополимеры, органические вещества и распадающиеся при гидролизе до аминокислот. Значение белков настолько велико, что информация о белках включена в два наиболее популярных определения Жизни: «Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка» (Ф.Энгельс). «Живые тела, существующие на Земле, представляют собой открытые, саморегулирующиеся и самовоспроизводящиеся системы, построенными из биополимеров – белков и нуклеиновых кислот» (М.В.Волькенштейн).

В состав простых белков (состоящих только из аминокислот) входят углерод, водород, азот, кислород и сера. Часть белков (сложные белки) образует комплексы с другими молекулами, содержащими фосфор, железо, цинк и медь – это сложные белки, содержащие помимо аминокислот еще и небелковую — простетическую группу. Она может быть представлена ионами металлов (металлопротеины — гемоглобин), углеводами (гликопротеины), липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеины).

Белки обладают огромной молекулярной массой: Один из белков – глобулин молока – имеет молекулярную массу 42000. Его формула С1864Н3012О576N468S21. Существуют белки, молекулярная масса которых в 10 и даже в 100 раз больше. Для сравнения: молекулярная масса спирта – 46, уксусной кислоты – 60, бензола – 78.

Белки представляют собой нерегулярные гетерополимеры, мономерами которых являются α-аминокислоты. В клетках и тканях обнаружено свыше 170 различных аминокислот, но в состав белков входит лишь 20 α-аминокислот. В зависимости от того, могут ли аминокислоты синтезироваться в организме, различают: заменимые аминокислоты – десять аминокислот, синтезируемых в организме и незаменимые аминокислоты – аминокислоты, которые в организме не синтезируются. Незаменимые аминокислоты должны поступать в организм вместе с пищей.

В зависимости от аминокислотного состава, белки бывают полноценными, если содержат весь набор незаменимых аминокислот и неполноценными, если какие-то незаменимые аминокислоты в их составе отсутствуют.

Общая формула аминокислот приведена на рисунке. Все α -аминокислоты при α -атоме углерода содержат атом водорода, карбоксильную группу (-СООН) и аминогруппу (-NH2). Остальная часть молекулы представлена радикалом.

Рис. 255. Амфотерные свойства аминокислот при различных рН.
Аминогруппа легко присоединяет ион водорода, т.е. проявляет основные свойства. Карбоксильная группа легко отдает ион водорода – проявляет свойства кислоты. Аминокислоты являются амфотерными соединениями, так как в растворе они могут выступать как в роли кислот, так и оснований. В водных растворах аминокислоты существуют в разных ионных формах. Это зависит от рН раствора и от того, какая аминокислота: нейтральная, кислая или основная.

Рис. 256. Образование дипептида.
В зависимости от количества аминогрупп и карбоксильных групп, входящих в состав аминокислот, различают нейтральные аминокислоты, имеющие одну карбоксильную группу и одну аминогруппу, основные аминокислоты, имеющие в радикале еще одну аминогруппу и кислые аминокислоты, имеющие в радикале еще одну карбоксильную группу.

Пептиды – органические вещества, состоящие из небольшого количества остатков аминокислот, соединенных пептидной связью. Образование пептидов происходит в результате реакции конденсации аминокислот (рис.).

При взаимодействии аминогруппы одной аминокислоты с карбоксильной группой другой, между ними возникает ковалентная азот-углеродная связь, которую называют пептидной. В зависимости от количества аминокислотных остатков, входящих в состав пептида, различают дипептиды, трипептиды, тетрапептиды и т.д. Образование пептидной связи может повторяться многократно. Это приводит к образованию полипептидов. Если полипептид состоит из большого количества остатков аминокислот, то его уже называют белком. На одном конце молекулы находится свободная аминогруппа (его называют N-концом), а на другом – свободная карбоксильная группа (его называют С-концом).

Структура белковой молекулы.

Выполнение белками определенных специфических функций зависит от пространственной конфигурации их молекул, кроме того, клетке энергетически невыгодно держать белки в развернутой форме, в виде цепочки, поэтому полипептидные цепи подвергаются укладке, приобретая определенную трехмерную структуру, или конформацию. Выделяют 4 уровня пространственной организации белков.

Первичная структура белка – последовательность расположения аминокислотных остатков в полипептидной цепи, составляющей молекулу белка. Связь между аминокислотами – пептидная.

Если молекула белка состоит всего из 10 аминокислотных остатков, то число теоретически возможных вариантов белковых молекул, отличающихся порядком чередования аминокислот – 2010. Белки же, выделенные из живых организмов, образованы сотнями, а иногда и тысячами аминокислотных остатков.

В организме человека обнаружено порядка десяти тысяч различных белков, которые отличаются как друг от друга, так и от белков других организмов.

Именно первичная структура белковой молекулы определяет свойства молекул белка и ее пространственную конфигурацию. Замена всего лишь одной аминокислоты на другую в полипептидной цепочке приводит к изменению свойств и функций белка. Например, замена в b-субъединице гемоглобина шестой глутаминовой аминокислоты на валин приводит к тому, что молекула гемоглобина в целом не может выполнять свою основную функцию – транспорт кислорода (в таких случаях у человека развивается заболевание – серповидноклеточная анемия).

Первым белком, у которого была выявлена аминокислотная последовательность, стал гормон инсулин. Исследования проводились в Кембриджском университете Ф.Сэнгером с 1944 по 1954 год. Было выявлено, что молекула инсулина состоит из двух полипептидных цепей (21 и 30 аминокислотных остатков), удерживаемых около друг друга дисульфидными мостиками. За свой кропотливый труд Ф.Сэнгер был удостоен Нобелевской премии.

Рис.. Вторичные структуры белка
Вторичная структура – упорядоченное свертывание полипептидной цепи в α-спираль (имеет вид растянутой пружины) и β-структра (складчатый слой). В α- спирали NH-группа данного остатка аминокислоты взаимодействует с СО-группой четвертого от нее остатка. Практически все «СО-» и «NН-группы» принимают участие в образовании водородных связей. Они слабее пептидных, но, повторяясь многократно, придают данной конфигурации устойчивость и жесткость. На уровне вторичной структуры существуют белки: фиброин (шелк, паутина), кератин (волосы, ногти), коллаген (сухожилия).

Cкладчатый слой (синоним β-структра) формируется в том случае, если сегменты полипептидных цепей располагаются параллельно или антипараллельно друг другу в один слой. При этом образуется фигура, напоминающая лист, сложенный гармошкой.

Рис.. Связи, стабилизирующие третичную структуру: А — водородные, Б — ионные, В — дисульфидные.
Третичная структура — укладка полипептидных цепей в глобулы, возникающей в результате возникновения химических связей (водородных, ионных, дисульфидных) и установления гидрофобных взаимодействий между радикалами аминокислотных остатков. Основную роль в образовании третичной структуры играют гидрофильно-гидрофобные взаимодействия. В водных растворах гидрофобные радикалы стремятся спрятаться от воды, группируясь внутри глобулы, в то время как гидрофильные радикалы в результате гидратации (взаимодействия с диполями воды) стремятся оказаться на поверхности молекулы.

У некоторых белков третичная структура стабилизируется дисульфидными ковалентными связями, возникающими между атомами серы двух остатков цистеина. На уровне третичной структуры существуют ферменты, антитела, некоторые гормоны. По форме молекулы различают белки глобулярные и фибриллярные. Если фибриллярные белки выполняют в основном опорные функции, то глобулярные белки растворимы и выполняют множество функций в цитоплазме клеток или во внутренней среде организма.

Рис.. Молекула гемоглобина
Четвертичная структура характерна для сложных белков, молекулы которых образованы двумя и более глобулами. Субъединицы удерживаются в молекуле исключительно при помощи нековалентных связей, в первую очередь водородных и гидрофобных.

Наиболее изученным белком, имеющим четвертичную структуру, является гемоглобин. Он образован двумя a-субъединицами (141 аминокислотный остаток) и двумя b-субъединицами (146 аминокислотных остатков).С каждой субъединицей связана молекула гема, содержащая железо.

Рис.. Микротрубочка из тубулина
Многие белки с четвертичной структурой занимают промежуточное положение между молекулами и клеточными органеллами – например микротрубочки цитоскелета состоят из белка тубулина, состоящего из двух субъединиц. Трубочка удлиняется в результате присоединения димеров к торцу.

Если по каким-либо причинам пространственная конформация белков отклоняется от нормальной, белок не может выполнять свои функции


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: