Расчет на прочность. Плоским (прямым) поперечным изгибом балки называется изгиб, при котором все внешние нагрузки действуют в одной из главных пло­скостей инерции балки

Плоским (прямым) поперечным изгибом балки называется изгиб, при котором все внешние нагрузки действуют в одной из главных пло­скостей инерции балки, причем проекции внешних сил и реакций опор на ось балки равны нулю. В этом случае отличны от нуля только две из шести внутренних сил: внутренняя поперечная сила Qy и внутренний изгибающий момент Mz., действующий в этой же плоскости, где приложены внешние силы (рис. 23).

Рис. 23. Внутренние силы в поперечном сечении балки:

поперечная сила Qy (х) и изгибающий момент Mz. (х)

Эти внутренние силы определяются методом сечений из условий статического равновесия части балки, расположенной по одну сторону от рассматриваемого сечения, под действием внешней нагрузки и искомых внутренних сил, действующих со стороны отброшенной части балки. Условия статического равновесия сводятся к двум уравнениям статики: равенстве нулю суммы проекций на ось у всех сил (Σ Y = 0) и равенстве нулю суммы моментов в сечении х всех сил (Σ mx = 0).

Для балки (см. рис 23) поперечная сила Qy (х) и изгибающий момент Mz. (х) определяются из двух уравнений статического равновесия:

Σ Y = F – q∙a –- Qy (х) = 0,

откуда

Qy (х) = F – q∙a, (2)

(3)

При выполнении условий (2) и (3) все остальные условия статического равновесия удовлетворяются автоматически, т. е. никаких других внутренних сил при плоском изгибе не возникнет.

Из (2) и (3) видим, что внутренняя поперечная сила Qy (х) в сечении x численно равна алгебраической сумме всех внешних сил, действующих по одну сторону от рассматриваемого сечения. Аналогично, внутренний изгибающий момент Mz (х) в сечении х численно равен алгебраической сумме моментов всех внешних нагрузок, действующих по одну сторону от рассматриваемого сечения.

Для того, чтобы внутренние силы определялись однозначно и независимо от того, равновесие какой части балки рассматривается, вводят правило знаков для Qy (х) и Mz (х).

Если внешняя сила (F, q) стремится повернуть рассматриваемую часть балки относительно центра тяжести сечения x по ходу часовой стрелки, то ее вклад во внутреннюю силу Qy (х) положителен, если против хода часовой стрелки – отрицателен (рис. 24).

Рис. 24. Определение знака поперечной силы Qy (х)

Если внешняя сила (F, q, M) стремится изогнуть часть балки относительно центра тяжести сечения х выпуклостью вниз (сжатое волокно сверху), то ее вклад во внутренний момент Mz (х) положителен; если выпуклостью вверх (сжатое волокно снизу) – отрицателен (рис. 25).

Рис. 25. Определение знака изгибающего момента Mz (х)

Направим ось абсцисс (ox) системы координат слева направо вдоль оси балки. Тогда внутренние усилия Qy (х), Mz (х) в поперечных сечениях и внешняя распределенная нагрузка q будут функциями x. Они связаны дифференциальными соотношениями:

(4)

(5)

(6)

Здесь q (х) считается положительной, если она направлена вверх. Эти соотношения следует использовать при проверке правильности построения эпюр Qy (х) и Mz (х).

Внутренний изгибающий момент связан с нормальными напряжениями, которые распределяются по высоте сечения неравномерно, вызывая растяжение одной его части и сжатие другой.

Условие прочности по нормальным напряжениям для балки любой формы поперечного сечения имеет вид

(7)

где Mz – изгибающий момент в опасном сечении балки, Н∙м;

Iz – момент инерции поперечного сечения, м4;

y max – расстояние от нейтральной оси до наиболее удаленной точки

поперечного сечения, м.

Для балок, поперечные сечения которых симметричны относительно нейтральной оси z, условие прочности преобразуется к виду

, (8)

где Wz – осевой момент сопротивления поперечного сечения, м3.

На основании соотношений (7), (8) Wz определяется по формуле

Поперечная сила Qy (х), вектор которой лежит в плоскости поперечного сечения, вызывает в точках сечения касательные напряжения τ xy. По закону парности касательных напряжений на продольных площадках возникают равные им напряжения τ yх = τ xy = τ. ..

Напряжения τ xy возникают вследствие деформации среза поперек продольных волокон балки, а напряжения τ yх вызваны деформацией сдвига продольных волокон вдоль балки.

Для балок постоянного поперечного сечения при допущении, что касательные напряжения τ . по ширине сечения b распределены равномерно, касательные напряжения при изгибе определяются по формуле Журавского:

,

где – статический момент относительно оси z отсеченной части сечения;

b –ширина сечения;

Iz –осевой момент инерции сечения.

Интенсивность сдвигающих усилий Т (погонная сдвигающая сила) определяется равенством

.

Касательные напряжения распределяются по сечению неравномерно, достигая максимального значения на нейтральной оси. Как показывают расчеты, в балках, поперечные размеры которых много меньше их длины, касательные напряжения в поперечных сечениях значительно меньше нормальных, поэтому, если балка изготовлена из изотропного материала, то при записи условия прочности касательные напряжения можно не учитывать, именно поэтому σэкв ≈ σ.

6.1.1. Построение эпюр внутренних сил Qy и Mz

Эпюрой внутренней силы называется график ее изменения вдоль оси балки. Из определения внутренней поперечной силы Qy (х) следует, что в том и только в том сечении, где приложена внешняя сосредоточенная сила, имеется скачок на эпюре Qy (х) на величину этой силы. Аналогично из определения внутреннего изгибающего момента Mz (х) следует, что в том и только в том сечении, где приложен внешний изгибающий момент, – скачок на эпюре Mz (х) на величину этого момента. Под внешними силами и моментами мы подразумеваем и реакции опор.

При проверке правильности построения эпюр Qy (х) и Mz (х) можно использовать табл. 6, составленную на основании дифференциальных соотношений (4) – (6). В этой таблице указана связь между знаками интенсивности распределенной нагрузки q(x), поперечной силы Qy (х) и характером изменения эпюр Qy (х) и Mz (х).

Таблица 6

Правила построения эпюр Qy (х) и Mz (х), основанные

на дифференциальных зависимостях между q, Qy (х), Mz (х)

Распреде-ленная нагрузка q, кН/м Поперечная сила Qy, кН Изгибающий момент Mz, кН∙м
  q=0 Поперечная сила постоянна Изгибающий момент изменяется по линейному закону
  Момент постоянный ______
+ Момент возрастает
_ Момент убывает
  q >0 Поперечная сила возрастает по линейному закону Момент изменяется по закону параболы, выпуклость вниз
  Момент принимает экстремальное значение M min
  + Момент возрастает по закону параболы, выпуклость вниз
_ Момент убывает по закону параболы, выпуклость вниз
  q < 0 Поперечная сила убывает по линейному закону Момент изменяется по закону параболы, выпуклость вверх
  Момент принимает экстремальное значение M max
  + Момент возрастает по закону параболы, выпуклость вверх
  _ Момент убывает по закону параболы, выпуклость вверх

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: