Электронная микроскопия

Изучение порошков с помощью электронного микроскопа применяется в практике физических исследований уже достаточно давно. В настоящее время наиболее широко используется растровый электронный микроскоп (РЭМ).

Принцип действия РЭМ основан на использовании некоторых эффектов, возникающих при облучении поверхности объектов тонко сфокусированным пучком электронов - зондом. Как показано на рис 5.4., в результате взаимодействия электронов - 1 с образцом (веществом) - 2 генерируются различные сигналы. Основными из них являются поток электронов: отраженных - 3, вторичных - 4, оже-электронов - 5, поглощенных - 6, прошедших через образец - 7, а также излучений: катодолюминесцентного- 8 и рентгеновского - 9.

Для получения изображения поверхности образца используются вторичные, отраженные и поглощённые электроны. Остальные излучения применяются в РЭМ как дополнительные источники информации.

Рис. 5.4. Эффекты взаимодействия электронного луча с объектом.1 – электронный луч, 2 – объект, 3 – отраженные электроны, 4 – вторичные электроны, 5 – оже-электроны, 6 – ток поглощенных электронов, 7 – прошедшие электроны, 8 – катодолюминесцентное излучение, 9 – рентгеновское излучение

Важнейшей характеристикой любого микроскопа является его разрешающая способность. Она определяется площадью сечения или диаметром зонда, контрастом, создаваемым образцом и детекторной системой, а также областью генерации сигнала в образце.

Диаметр зонда в основном зависит от конструктивных особенностей и качества узлов микроскопа и прежде всего электронной оптики. В современных РЭМ достигнуто высокое совершенство компонентов конструкции, что позволило уменьшить диаметр зонда до 5...10 нм.

Контраст зависит от топографии поверхности, химического состава объекта, поверхностных локальных магнитных и электрических полей, кристаллографической ориентации элементов структуры. Важнейшими из них являются топографический, зависящий от неровностей поверхности образца, а также композиционный, зависящий от химического состава. Уровень контраста определяется также и эффективностью преобразования падающего на детектор излучения, которое создает сигнал на его выходе. Если получаемый в итоге контраст недостаточен, то его можно повысить, увеличив ток зонда. Однако большой поток электронов в силу особенностей электронной оптики не может быть хорошо сфокусирован, то есть диаметр зонда возрастет и, соответственно, снизится разрешающая способность.

Другой фактор, ограничивающий разрешение, зависит от размеров области генерации сигнала в образце. Схема генерации различных излучений при воздействии электронного пучка на образец представлена на рис.5.5.

При проникновении первичных электронов в образец они рассеиваются во всех направлениях, поэтому внутри образца происходит расширение пучка электронов. Участок образца, в котором первичные электроны тормозятся до энергии Е=0, имеет грушевидную форму. Боковое расширение электронного пучка в образце в этом случае имеет величину от 1 до 2 мкм, даже когда зонд имеет диаметр 10 нм. Расхождение электронов приводит к тому, что площадь выхода на поверхность образца электронов будет больше фокуса электронного пучка. В связи с этим процессы рассеивания электронов внутри образца оказывают большое влияние на разрешающую способность изображений, получаемых в отраженных, вторичных и поглощенных электронах.

Рис. 5.5.Области сигналов и пространственное разрешение при облучении поверхности объекта потоком электронов (зонд). Области генерации: 1 – Оже-электронов, 2 – вторичных электронов, 3 – отраженных электронов, 4 – характеристического рентгеновского излучения, 5 – тормозного рентгеновского излучения, 6 – флуоресценции.

Отраженные электроны образуются при рассеивании первичных электронов на большие (до 90o) углы в результате однократного упругого рассеивания или в результате многократного рассеивания на малые углы. В конечном итоге первичные электроны, испытав ряд взаимодействий с атомами образца и теряя при этом энергию, изменяют траекторию своего движения и покидают поверхность образца. Размеры области генерации отраженных электронов (рис.5.5.) значительны и зависят от длины пробега электронов в материале образца. Протяженность области возрастает с увеличением ускоряющего первичные электроны напряжения и уменьшения среднего атомного номера Z элементов, входящих в состав образца. Протяженность области может изменяться от 0,1 до 1 мкм. Электроны, потерявшие в процессе отражения часть энергии, покидают образец на относительно больших расстояниях от места падения электронного зонда. Соответственно сечение, с которого получают сигнал, будет существенно больше сечения зонда. Поэтому разрешение РЭМ в режиме регистрации отраженных электронов небольшое и изменяется от десятков нанометров при работе с невысокими ускоряющими напряжениями и тяжелыми материалами до сотен нанометров при работе с большими ускоряющими напряжениями и легкими материалами. Важной особенностью эмиссии отраженных электронов является ее зависимость от атомного номера элементов. Если атомный номер атомов материала в точке падения первичного пучка электронов мал (легкие атомы), то образуется меньшее количество отраженных электронов с малым запасом энергии. В областях образца, содержащих высокую концентрацию атомов с большим атомным номером (тяжелые атомы), большее число электронов отражается от этих атомов и на меньшей глубине в образце, поэтому потери энергии при их движении к поверхности меньше. Эти закономерности используются при получении изображений в отраженных электронах.

Вторичные электроны. Первичные электроны, проникающие в образец, взаимодействуют с электронами внешних оболочек атомов объекта, передавая им часть своей энергии. Происходит ионизация атомов образца, а высвобождающиеся в этом случае электроны могут покинуть образец и быть выявлены в виде вторичных электронов. Они характеризуются очень малой энергией до 50 эВ и поэтому выходят из участков образца очень близких к поверхности (рис. 5.5.). Глубина слоя, дающего вторичные электроны, составляет 1...10 нм. В пределах этого слоя рассеивание электронов пренебрежимо мало, и поэтому при получении изображений во вторичных электронах разрешающая способность определяется прежде всего диаметром первичного зонда. Вторичные электроны обеспечивают максимальную в сравнении с другими сигналами разрешающую способность порядка 5...10 нм. Поэтому они являются в РЭМ главным источником информации для получения изображения поверхности объекта, и именно для этого случая приводятся паспортные характеристики прибора. Количество образующихся вторичных электронов слабо зависит от атомного номера элемента. Основным параметром, определяющим выход вторичных электронов, является угол падения пучка первичных электронов на поверхность объекта. Таким образом, вариации наклона микроучастков поверхности вызывают резко выраженные изменения в выходе вторичных электронов. Этот эффект используется для получения информации о топографии поверхности. С целью увеличения эмиссии вторичных электронов часто образец устанавливается под углом к оси зонда.

Поглощенные электроны. При воздействии зонда часть генерируемых электронов остается в объеме образца (рис.5.5.). Так, при энергиях первичного пучка 10...20 кэВ примерно 50% от общего числа образующихся вторичных и отраженных электронов достигают поверхности образца и покидают ее. Оставшиеся электроны образуют ток поглощенных электронов. Его величина равна разности между током зонда и токами отраженных и вторичных электронов. Эта разность является сигналом для получения изображения, на которое оказывают влияние как топографический, так и композиционный эффекты.

Поглощенные электроны генерируются в большом объеме (рис.5.5.). Разрешающая способность при получении изображений в этом случае имеет такой же порядок, как и для отраженных электронов. Однако данный метод получения изображений используется редко из-за малой разрешающей способности.

Схема и общий вид РЭМ приведена на рис.5.6. и 5.7.

РЭМ состоит из следующих основных узлов: электронной пушки 1...3, эмитирующей электроны; электронно-оптической системы 4...10, формирующей электронный зонд и обеспечивающей его сканирование на поверхности образца 12; системы, формирующей изображение 11...17.

РЭМ имеет вакуумную камеру, которая служит для создания необходимого разряжения (~10-3 Па) в рабочем объеме электронной пушки и электронно-оптической системы. Составными частями микроскопа являются механические узлы, обеспечивающие установку и перемещение образца.

Электронная пушка состоит из катода (вольфрамовая проволока, согнутая под углом) -1, цилиндра Венельта- 2 и анода- 3 (рис.5.8).

При нагреве катода прямым пропусканием тока происходит термоэмиссия электронов. Электроны ускоряются напряжением, приложенным между катодом и анодом, которое можно изменять от 1 до 50 кВ. Цилиндр Венельта - 2 имеет высокий отрицательный потенциал и служит для регулировки потока электронов. Пучок электронов от пушки проходит через три электромагнитные линзы -5, 6, 9. Фокусировка потока электронов осуществляется магнитным полем, имеющим осевую симметрию. Оно создается электромагнитной линзой, которая представляет собой соленоид. Магнитное поле возникает при пропускании электрического тока через обмотку соленоида, концентрируется с помощью, так называемого полюсного наконечника и воздействует на проходящий через него поток электронов. Фокусное расстояние линзы можно плавно регулировать путем изменения силы тока в обмотке соленоида. В системе имеются две диафрагмы - 4, 10, ограничивающие расходимость пучка электронов.

Рис. 5.6. Принципиальная схема растрового электронного микроскопа. электронной пушки 1-3, эмитирующей электроны; электронно-оптической системы 4-10, формирующей электронный зонд и обеспечивающей его сканирование на поверхности образца 12; системы, формирующей изображение 11-17

Рис.5.7.Сканирующий электронный микроскоп

Рис.5.8. Внешний вид цилиндра Венельда и анода РЭМ

Образец 12 крепится на предметном столике, который может перемещаться в трех взаимно перпендикулярных направлениях с помощью гониометра (рис.5.9), наклоняться до угла 90o по отношению к электронно-оптической оси и вращаться вокруг оси.

Рис.5.9. Камера РЭМ и расположенные в ней функциональные элементы

Электронный пучок, сфокусированный на поверхности образца, вызывает появление отраженных, вторичных и поглощенных электронов, которые используются для получения изображения поверхности образца. Эти сигналы улавливаются специальными детекторами. На схеме РЭМ представлен только один из возможного набора тип детектора, используемый для регистрации вторичных электронов -13. В детекторе поток электронов преобразуется в электрический сигнал (ток). После прохождения тока через усилитель -14 модулируется яркость экрана.

Режим регистрации вторичных электронов обеспечивает наибольшую разрешающую способность РЭМ. Поэтому именно этот режим используется при изучении топографии поверхности.

Режим регистрации отраженных электронах используется для изучения состава композиции, так как эмиссия этих электронов зависит от порядкового номера химического элемента. Например, на плоской поверхности образца участок материала с более высоким средним порядковым номером атомов отражает большее количество электронов. Он выглядит на экране более светлым относительно других участков образца. Полученный контраст называют композиционным. Изображение в отраженных электронах позволяет определить количество фаз в материале, наблюдать микроструктуру материала без предварительного травления шлифа и др. Выявление структуры материала становится возможным, поскольку химический состав зерен в многокомпонентных системах отличается от химического состава их границ.

В том случае, когда поверхность образца имеет ярко выраженные неровности, то дополнительно к композиционному возникает топографический контраст. Для разделения композиционного и топографического контрастов применяют два детектора отраженных электронов Эверхарта - Торнли.

При получении изображения в поглощенных электронах в сигнале присутствуют как композиционная, так и топографическая составляющая, при этом они не разделяются. При сканировании зонда по поверхности образца, имеющего химическую неоднородность и сильно выраженный рельеф, интенсивность сигнала будет меняться. Для улавливания сигнала не требуется специальный детектор. Его роль выполняет образец, в котором образуются поглощенные электроны. Поток поглощенных электронов только усиливается, а затем передается в блок изображения.

Сигналы, преобразованные детектором в электрический ток, после усиления служат для модулирования яркости точек на экране. Формирование изображения поверхности объекта на экране будет происходить следующим образом. С помощью отклоняющих катушек -7 осуществляется сканирование тонко сфокусированного зонда по поверхности образца. Оно проходит по линии. Совокупность параллельных линий (растр) дает представление о площади объекта. Генератор развертки -16, соединенный с отклоняющими катушками и монитором, обеспечивает синхронность передвижения электронного зонда по образцу и электронного луча по экрану. Благодаря этому, каждая точка на образце соответствует определенной точке на экране. В свою очередь, яркость точки на экране определяется интенсивностью сигнала, поступающего от соответствующей точки образца.

На рис.5.10. представлена морфология поверхности композиционного порошка оксида циркония, стабилизированного 6-8% оксида иттрия, полученного методом распыления, и его микроструктура.

а) б)

5.10. Микроструктура композиционного порошка оксида циркония, стабилизированного 6-8% оксида иттрия, полученного методом распыления., а) морфология поверхности; б) микроструктура частицы порошка. РЭМ


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: