Для введения понятия о циркуляции скорости в настоящем пособии используется методика Н.Я.Фабриканта, приведенная в упомянутой выше книге. Несомненным преимуществом ее является то, что в отличие от других она позволяет ввести понятие циркуляции не чисто математически, а исходя из достаточно простых и ясных физических предпосылок.
| Рис. 5.3 |
|
Рассмотрим крыловой профиль, находящийся в потоке газа (воздуха). Как известно, на профиль в этом случае будет действовать подъемная сила (см. рис. 5.3). Физически наличие этой силы можно объяснить лишь тем, что давление под профилем (
) больше, а давление над профилем (
) меньше, чем давление на каком-то удалении от него, которое мы обозначим
. Это позволяет утверждать, что под крыловым профилем скорость
, а над ним
. В данном случае
- скорость невозмущенного потока.
Вычтем теперь из скоростей
и
скорость
, т.е.
и
. Это действие приводит нас к понятию потока возмущения, т.е. движения, которое возникает в среде из-за того, что в нее внесено инородное тело, т.е., по существу, это реакция потока, обусловленная в рассматриваемом случае тем, что в ней появился крыловой профиль. Установим теперь направление потоков возмущения. Под профилем
, и он направлен против скорости
, над профилем - наоборот. В результате появляется циркуляционный поток, направленный по часовой стрелке, как это показано на рис. 5.3. Теперь необходимо охарактеризовать этот поток количественно. Именно с этой целью вводится понятие циркуляции скорости по замкнутому контуру.
Рассмотрим замкнутый контур C, показанный на рис. 5.4. Пусть в произвольной точке M скорость равна
. Составим скалярное произведение
, где
- направленный элемент дуги.
|
Циркуляцией скорости называют контурный интеграл вида
(5.11)
| Рис. 5.4 |
Обратим внимание на структуру этого соотношения. Оно построено аналогично выражению для работы, поэтому иногда говорят, что циркуляция - это своеобразная «работа» вектора скорости. Имея в виду, что
и
, по правилу скалярного произведения получим
(5.12)
Для плоского течения:
(5.13)
В конце предыдущего раздела утверждалось, что понятие циркуляции является более удобным, чем интенсивность вихря. Действительно, из (5.13) следует, что для определения циркуляции достаточно знать проекции скорости, нахождение которых не связано с существенными трудностями. Однако остается пока открытым вопрос о том, существует ли связь между циркуляцией и интенсивностью вихря. Ответ на него дает теорема Стокса.






