Действие электрического тока на организм человека

1. Термическое.

2. Электролитическое.

3. Механическое (динамическое).

4. Биологическое.

1. Термическое. Функциональные расстройства вызываются в организме при нагреве его до высокой температуры.

По закону Джоуля -Ленца тепло выделяется при прохождении электрического тока

Q = I 2 R,

а так как 80 % человеческого тела состоит из биологической жидкости, то при прохождении электрического тока происходит повышение температуры тела, а затем перегревание жидкостей и ожоги тканей.

2. Электролитическое. Разложение биологической (органической) жидкости, в том числе и крови на составляющие, сопровождающееся нарушением физико-химического состава. Этот процесс не обратим.

3. Динамическое. Ампер проделывал опыт с лягушки, пропуская электрический тока через ее лапку лапкой, что вызывало сокращение мышц.

У человека действие электрического тока также вызывает судорожные сокращения мышц, в результате могут быть разрывы тканей, вывихи, переломы костей в результате электродинамического эффекта, а также мгновенного взрывоподобного образования пара от перегретой тканевой жидкости и крови.

4. Биологическое действие тока проявляется в раз­дражении и возбуждении живых тканей организма, а также в нарушении внутренних биоэлектрических процессов, проте­кающих в нормально действующем организме и теснейшим образом связанных с его жизненными функциями.

Электрический ток, проходя через организм, раздражает живые ткани, вызывая в них ответную реакцию – возбуждение, являющееся одним из основных физиологических процессов.

Если электрический ток проходит непосредственно через мы­шечную ткань, то возбуждение проявляется в виде непроизвольного сокращения мышц. Это так называемое прямое или непосредственное биологическое действие тока.

Однако действие тока может быть не только прямым, но и рефлекторным (косвенным), т.е. через центральную нервную систему. Ток может вызывать возбуждение и тех тканей, которые не находятся на его пути. Дело в том, что электрический ток, проходя через тело че­ловека, вызывает раздражение рецепторов – особых клеток, обладающих вы­сокой чувствительностью к воздействию факторов внешней и внутрен­ней среды.

Раздражение рецепторов приводит в возбуждение находящиеся возле них чувствительные нервные окончания, от которых волна воз­буждения в виде нервного импульса передается по нервным путям в центральную нервную систему (т. е. в спинной и головной мозг).

ЦНС передает нервный импульс к мышцам, железам, сосудам, которые могут находиться вне зоны прохождения тока.

При обычных раздражениях рецепторов ЦНС обеспечивает целесообразную ответную деятель­ность соответствующих органов тела. Например, при случайном при­косновении к горячему предмету человек непроизвольно отдернет от него руку. В случае же чрез­мерного для организма раздражающего действия, на­пример, электрического тока, ЦНС может по­дать нецелесообразную исполнительную команду, что может привести к серьезным нарушениям деятельности жизненно важных органов, в том числе сердца и легких, даже если эти органы не лежат на пути тока.

В живой ткани, в первую очередь в мышцах, в том числе и сердечной мышце, а также в центральной и периферической не­рвной системе постоянно возникают электрические потенциалы – био­потенциалы, которые связаны с возникновением и распространением процесса возбуждения, т. е. с переходом живой ткани в состояние ак­тивной деятельности.

Внешний ток, взаимодействуя с биотоками, значения которых весьма малы, может нарушить нормальный характер их воздействия на ткани и органы человека, подавить биотоки и тем самым вызвать специфические расстройства в организме вплоть до его гибели.

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИСХОД ПОРАЖЕНИЯ

Исход воздействия электрического тока на организм человека зависит от ряда факторов: 1) сопротивления тела человека, от 2) значения и ро­да тока и 3) длительности прохождения тока через тело человека, 4) пути тока, 5) частоты тока, 6) приложенного к нему напряжения,а также 7) индивидуальных свойств челове­ка.

1. Сопротивление тела человека влияет на исход поражения, поскольку оно определяет значение тока, проходяще­го через человека, и приложенного к нему напряжения,.

Сопротивление тела человека колеблется от нескольких сот Ом до 2 кОм.

Тело человека является проводником электрического тока. Проводимость живой ткани в отличие от обычных про­водников обусловлена физическими свойствами, сложнейшими биохимическими и биофизическими процес­сами, присущими лишь живой материи.

В результате сопротивление тела человека является пере­менной величиной, имеющей нелинейную зависимость от мно­жества факторов, в том числе от состояния кожи, параметров электрической цепи, физиологических факторов и состояния окружающей среды.

В живой ткани нет свободных электронов, и поэтому она не может быть уподоблена металлическому проводнику, электри­ческий ток в котором представляет собой упорядоченное дви­жение свободных электронов

Роговой слой кожи имеет наибольшее сопротивление, особенно мозоли. Мягкие ткани имеют гораздо меньшее сопротивление

а) схема кожи как конденсатора; б), в) схема замещения.

Сопротивление тела человека, т. е. сопротивление между двумя электродами, наложенными на поверх­ность тела, можно условно считать состоящим из трех последовательно включенных сопротивлений: двух оди­наковых сопротивлений наружного слоя кожи, составляющими так назы­ваемое наружное сопротивление тела человека, и одно­го, называемого внутренним сопротивлением тела, которое включает в себя два сопротивления внутреннего слоя кожи и сопротивление внутренних тка­ней тела

R внутр.магк.тк.= 300–500 Ом;

r вхкожи. = 1 кОм –100 кОм;

с вхкожи. = 0,01 мФ; при расчетах обычно пренебрегают.

R h (~, =) min для всех расчетов = 1000 Ом.

Состояние кожи сильно влияет на величину сопротивления тела человека. Так, порезы, царапины, ссадины и другие микротравмы, могут снизить сопротивление те­ла до значения, близкого к значению его внутреннего сопротивления, т. е. до 500–700 Ом, увеличивая опасность поражения человека током.

Такое же влияние оказывает и увлажнение кожи водой или за счет пота. повышая ее проводимость.

Таким образом, работа с электроустановками сыры­ми руками или в условиях, вызывающих увлажнение каких-либо участков кожи, а также при повышенной температуре воздуха или при других условиях, вызы­вающих усиленное потовыделение, усугубляет опас­ность поражения человека током.

Загрязнение кожи различными веществами и в осо­бенности хорошо проводящими электрический ток (ме­таллическая или угольная пыль) сопровождается снижением ее сопротивления.

На сопротивление тела оказывает влияние площадь контактов, а также место их приложения, так как у одного и того же человека со­противление кожи неодинаково на разных участ­ках тела.

Наименьшим сопротивлением обладает кожа лица, шеи, рук на участке выше ладоней, тыльной стороны ладоней, подмышечных впа­дин, и др.

Чем меньше сопротивление кожи, а, следовательно, тела в целом, тем больший ток прохо­дит через человека и тем опаснее исход поражения его током. Данное обстоятельство нередко приходится учи­тывать в практической деятельности. Например, при работе под напряжением на воздушной линии 127–380 В (по исправлению уличного освещения, заме­не перегоревшего предохранителя на вводе в дом и т. п.), кроме обычных защитных средств – диэлектрических перчаток, инструмента с изолированными рукоятками и т. п., необходимо надевать изолирующий шлем или обычный головной убор, поскольку случайное прикос­новение головой к проводам приводит к тяжелым по­следствиям. Рукава спецодежды должны быть опуще­ны и по возможности застегнуты у запястья.

Величина R h нелинейная – уменьшается с увеличением тока, напряжения и со временем воздействия.

Значение тока и длительность его прохождения через тело человека оказывают не­посредственное влияние на сопротивление тела: с уве­личением тока и времени его прохождения сопротивле­ние падает, поскольку при этом усиливается местный нагрев кожи, что приводит к расширению ее сосудов, а следовательно, к усилению снабжения этого участка кровью и увеличению потовыделения.

С ростом напряжения, приложенного к телу человека, происходит уменьшение в десятки раз сопро­тивления кожи, а следовательно, и сопротивления тела в целом, которое приближается к сопротивлению внут­ренних тканей тела, т. е. к своему наименьшему значе­нию 300–500 Ом. Это можно объяснить электрическим пробоем рогового слоя кожи, который про­исходит при напряжении 50-200 В, увеличением тока, проходящего через кожу (за счет повышения прило­женного напряжения), и др.

Сопротивление человека зависит также от рода и частоты тока. При постоянном токе полное сопротивление тела z h оказывается равным активному сопротивлению R h. При переменном токе z h меньше R h. С увеличением частоты переменного тока z h будет уменьшаться. При 2500–5000 Гц z h ненамного отличается от внутреннего сопротивления R в, а при 10–20 кГц и больше можно считать, что наружный слой кожи практически утрачи­вает сопротивление электрическому току и, следова­тельно, z h = R в.

2. Величины (значения) Ih и род тока:

а) пороговый ощутимый ток – слабый зуд и легким покалыванием при ~ токе, ощущение нагрева кожи при = токе:

~ в среднем 1,1 мА при f = 50 Гц; = около 6 мА.

Указанные значения поро­говых ощутимых токов справедливо лишь для случаев прохождения тока через тело человека по пути рука – рука или рука –ноги, т. е. когда человек касается токоведущих частей ладонями обеих рук или ладонью одной руки, стоя на токопроводящем основании. Если же контакт с токоведущими частями создается другими участками тела, имеющими более нежный кожный по­кров, в том числе тыльной стороной руки, лицом и пр., то человек начинает ощущать ток еще меньшего зна­чения.

Пороговый ощутимый ток не может вызвать пора­жения человека, и в этом смысле он не является опас­ным. Однако длительное прохождение его через чело­века отрицательно сказывается на здоровье, и поэтому является недопустимым.

Кроме того, ощутимый ток может стать косвенной причиной несчастного случая, поскольку человек, по­чувствовав воздействие тока, теряет уверенность в сво­ей безопасности и может произвести неправильные дей­ствия. Особенно опасным является неожиданное действие ощутимого тока при работах вблизи токоведущих частей, на высоте и в других аналогичных условиях.

Безопасный ток, который длительно (в тече­ние нескольких часов) может проходить через челове­ка, не нанося ему вреда и не вызывая никаких ощуще­ний, очевидно, во много раз меньше порогового ощути­мого тока. Точные значения безопасного тока не установлены, в практике его ограничивают несколькими микроамперами, и во всяком случае он не превышает 50 мкА при 50 Гц и 100 мкА при постоян­ном токе.

Значение безопасного тока необходимо учитывать при конструировании изолирующих защитных средств – штанг, клещей и пр., изолирующих устройств и приспо­соблений для работы под напряжением, экранирующих защитных костюмов и пр. Дело в том, что токи утечки через изоляцию устройств и приспособлений, а также емкостные токи системы человек – земля длительно проходят через человека и поэтому не должны превы­шать значений безопасного тока.

Неотпускающий ток. Увеличение тока сверх порога ощутимых токов вызывает у человека судороги мышц и неприятные болезненные ощущения, которые с ро­стом тока усиливаются и распространяются на все большие участки тела.

Так, при 3-5 мА и 50 Гц раздражающее действие то­ка ощущается всей кистью руки; при 8-10 мА боль рез­ко охватывает всю руку, сопровождаясь непроизвольными сокращениями мышц кисти руки и предплечья.

При 10-15 мА боль становится непереносимой, а су­дороги мышц рук оказываются настолько значительны­ми, что человек не может разжать руку, в которой зажата токоведущая часть, не может отбросить от себя провод, т. е. он не в состоянии самостоятельно нарушить контакт с токоведущей частью и оказывается как бы прикованным к ней. Такой же эффект производят и токи большего зна­чения. Все эти токи носят название неотпускающих, а наименьший из них – 10-15 мА при 50 Гц (50-80 мА при постоянном токе) – является порогом неотпуска­ющих токов и называется пороговым неотпускающим током.

Пороговый неотпускающий ток условно можно счи­тать безопасным для человека в том смысле, что он не вызывает немедленного поражения его. Однако при дли­тельном прохождении ток растет за счет уменьшения сопротивления тела, в результате чего усиливаются бо­ли и могут возникнуть серьезные нарушения работы легких и сердца, а в некоторых случаях наступает смерть.

При постоянном токе неотпускающих токов, строго го­воря, нет, т. е. человек при любых значениях тока может самостоятельно оторваться от токоведущих частей. Од­нако в момент отрыва возникают весьма болезненные сокращения мышц, аналогичные тем, которые наблюда­ются при переменном токе примерно такого же значения.

Опыты показали, что наибольший постоянный ток, при котором человек в состоянии выдержать боль, возникающую в момент отрыва рук от электродов, со­ставляет 50–80 мА. Этот ток и принят условно за порог неотпускающих токов при постоянном напряжении. Зна­чения пороговых неотпускающих токов у разных людей различны. Они различны также у мужчин, женщин и де­тей. Средние значения их составляют: для мужчин 16 мА при 50 Гц и 80 мА при постоянном токе, для женщин (соответственно) 11 и 50 мА, для детей 8 и 40 мА.

Ток, превышающий пороговый неотпускающий ток, 25-50 мА при Гц усиливает болевые раздражения и судорожные сокраще­ния мышц, которые распространяются на большие уча­стки тела человека, в том числе на мышцы грудной клетки. Длительное воздействие этого тока может вызвать прекращения ды­хания, после чего спустя некоторое время наступит смерть от удушья. Этот ток одновременно приводит к повышению артериального давления крови и затруднению работы сердца. В случае длительного воздействия тока наступа­ет ослабление деятельности сердца и как итог этого – потеря сознания.

Ток больше 50 мА вплоть до 100 мА (50 Гц) действует значительно сильнее тока 25–50 мА. Явления нарушения работы легких и сердца наступают через меньший промежуток времени. Кроме того, воздействие этого тока на сердечно-сосудистую систе­му оказывается более выраженным и опасным. При этом токе, как и при токе 25–50 мА, первыми (по времени) поражаются, как правило, легкие, а затем сердце.

Фибрилляционный ток. Ток 100 мА и более (при 50 Гц), проходя через тело человека по тому же пути (рука – рука или рука – ноги), распространяют свое действие на мышцу сердца. Это обстоятельство является весьма опасным для жизни человека, поскольку спустя 1–2 с с момента замыкания цепи этого тока через человека может насту­пить фибрилляция сердца. При этом прекращается кро­вообращение и, в организме возникает недостаток кислорода; это в свою очередь быстро приво­дит к прекращению дыхания, т. е. наступает смерть. Та­ким образом, при токе 100 мА и более прекращает рабо­ту сердце, а затем легкие, причем поражение сердца наступает быстро: обычно не более чем через 2 с с нача­ла воздействия тока.

Токи, которые вызывают фибрилляцию сердца, назы­ваются фибрилляционными, наименьший из них поро­говым фибрилляционным током.

При частоте 50 Гц. фибрилляционными являются токи в пределах от 100 мА до 5 А, а пороговым фибрилляци­онным током 100 мА. При постоянном токе порогом фибрилляции считается ток 300 мА, а верхним пределом фибрилляционного тока 5 А.

Эти данные справедливы при условии длительного прохождения тока через чело­века (не менее 2–3 с) по пути рука – рука или рука – ноги. Если же ток проходит кратковременно, то значение порогового фибрилляционного тока возрастает.

При ином пути фибрилляционные токи могут иметь большие или меньшие значения. Так, например, в случае прикосновения к токоведущей части непосредственно грудью фибрилляция сердца может наступить при токе, значительно меньшем 100 мА, поскольку в этом случае значительная часть этого тока будет проходить непо­средственно через сердце.

Ток больше 5 А как при 50 Гц, так и при постоянном токе фибрилляцию сердца, как правило, не вызывает. При таких токах происходит немедленная остановка сердца, минуя состояние фибрилляции.

Если действие тока было кратковременным (до 1–2 с) и не вызвало повреждения сердца в результате нагрева, ожога и т. п., после отключения тока сердце, как правило, самостоятельно возобновляет нормальную деятельность. В практике наблюдались случаи выжива­ния людей после того, как через них проходил ток в несколько ампер и даже в несколько десятков ампер.

Однако при больших токах, даже в случае кратковре­менного воздействия их, наряду с остановкой сердца происходит и паралич дыхания. При этом после отклю­чения тока дыхание как правило, самостоятельно не вос­станавливается и требуется немедленная помощь постра­давшему в виде искусственного дыхания.

При больших токах смер­тельные поражения являются обычно следствием прек­ращения дыхания, как и при токах до 100 мА.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: