Местные электротравмы

Местная электротравма – ярко выраженное мест­ное нарушение целостности тканей тела, в том числе костных тканей, вызванное воздействием электрического тока или элек­трической дуги. Это поверхностные повреждения кожи, мягких тканей, связок и костей.

Опасность местных травм и сложность их лече­ния зависят от места, характера и степени повреждения тканей, а также от реакции организма на это повреждение. Как прави­ло, местные травмы излечиваются и работоспособность пострадавшего полностью или частично восстанавливается.

Характерные местные электротравмыэлек­трические ожоги, электрические знаки, металлизация кожи, ме­ханические повреждения и электроофтальмия.

Электрический ожог — самая распространенная электротрав­ма: ожоги возникают у большей части (63%) пострадавших от электрического тока, причем треть их (23%) сопровождается другими травмами – знаками, металлизацией кожи и офталь­мией.

Около 85 % всех электрических ожогов приходится на электромонтеров, обслуживающих действующие электроустановки.

Различают два ос­новных вида ожога: токовый ( или контактный), возникающий при прохождении тока непосредственно через тело человека в результате его контакта с токоведущей частью, и дуговой, обусловленный воздействием на тело человека электрической дуги.

Токовый (контактный) ожог возникает в электро­установках относительно небольшого напряжения – не выше 2 кВ. При более высоких напряжениях, как правило, образуется электрическая дуга или искра, которые и обусловливают воз­никновение дугового ожога.

Контактный ожог участка тела является следствием преобразова­ния энергии электрического тока, проходящего через него, в тепловую. Поэтому такой ожог тем опаснее, чем больше ток, время его прохо­ждения и электрическое сопротивление участка тела, подвергшегося воздействию тока. Поскольку при таких ожогах напряжение, прило­женное к телу человека, сравнительно невелико, ток, проходящий через человека, также невелик: доли ампера или в худшем случае несколько ампер. Однако в месте контакта тела с токоведущей частью плотность тока может достигать больших значений, так как площадь соприкос­новения тела с токоведущей частью обычно невелика. Здесь же ток встречает и наибольшее сопротивление, а именно сопротивление кожи, которое во много раз больше сопротивления внутренних тканей. По­этому максимальное количество теплоты выделяется в месте контакта проводника с кожей, а точнее, в том участке кожи, который находится в контакте с токоведущей частью.

Этим и объясняется, что токовый ожог является, как правило, ожогом кожи. Лишь в редких случаях, когда через тело человека про­ходит большой ток, при контактном ожоге могут быть поражены и подкожные ткани. Кроме того, тяжелые повреждения внутренних тканей могут возникнуть при контактных ожогах, вызванных токами высокой частоты. При этом кожа может иметь незначительные повреждения.

Токовые ожоги образуются примерно у 38 % пострадавших от электрического тока, в большинстве случаев они являются ожогами I и II степеней; при напряжениях выше 380 В возни­кают и более тяжелые ожоги — III и IV степеней.

Дуговой ожог наблюдается в электроустановках раз­личных напряжений. При этом в установках до6 кВ ожоги являются следствием случайных коротких замыканий, напри­мер при работах под напряжением на щитах и сборках до 1000 В, измерениях переносными приборами (электроизмери­тельными клещами) в установках выше 1000 В (до 6 кВ) и т. п.

В качестве примера можно привести следующий случай. При ре­монте щита 380 В под напряжением электромонтер, стоя на деревян­ном полу, случайно замкнул проводом ножи рубильника. Возникшая электрическая дуга вызвала ожоги I и II степеней лица, шеи и правой руки монтера. При этом ток через него не проходил. Ожоги предплечья и плеча возникли от загоревшейся одежды.

В установках более высоких напряжений дуга возникает при случайном приближении человека к токоведущим частям, нахо­дящимся под напряжением, на расстояние, при котором проис­ходит пробой воздушного промежутка между ними; при повре­ждении изолирующих защитных средств (штанг, указателей напряжения и т. п.), которыми человек касается токоведущих частей, находящихся под напряжением; при ошибочных опера­циях с коммутационными аппаратами (например, при отключе­нии разъединителя под нагрузкой с помощью штанги), когда дуга нередко перебрасывается на человека, и т. п.

Во всех этих случаях возникает мощная дуга, вызывающая обширные ожоги на теле человека и обусловливающая прохождение через него больших токов – в несколько ампер и даже десятки ампер. В этих случаях поражения носят тяжелый характер и оканчиваются, как правило, смертью пострадавшего, причем тяжесть поражения возрастает обычно с увеличением напряже­ния электроустановки.

Электрическая дуга может вызвать обширные ожоги тела, выгора­ние тканей на большую глубину, обугливание и даже бесследное сгора­ние больших участков тела или конечностей.

Электрические знаки – пятна серого или бледно желтого цвета круглой или овальной формы на поверхности тела человека, подвергшегося действию электрического тока. Пораженный участок затвердевает наподобие мозоли. Верхний слой кожи как бы омертвляет. Обычно они безболезненны

Металлизация кожи – проникновение расплавившего от электрической дуги металла в верхние слои кожи человека. Мельчайшие брызги расплавленного металла высокой температуры разлетаются с большой скоростью. Но малый запас теплоты не способен прожечь одежду, поэтому поражаются открытые участки тела. Пораженный испытывает напряжение кожи от присутствия в ней инородного тела. Со временем кожа сходит, возвращается эластичность.

Механические повреждения – разрывы тканей, сухожилий, вывихи, переломы костей в следствие непроизвольных судорожных сокращений мышц под действием тока, проходящего через тело человека.

Механические повреждения происходя в установках до 1000 В при относительно длительном нахождении человека под напряжением. Это серьезные травмы, требующие длительного лечения.

Электроофтальмия – это облучение наружных оболочек глаз мощным потоком ультрафиолетовых и инфракрасных лучей, который возникает при возникновении электрической дуги.

Электроофтальми я развивается через 4–8 ч после ультрафиолетового облучения, продолжается несколько дней, в случаях поражения роговой оболочки лечение более долгое и сложное.

Сопротивление тела человека влияет на исход поражения, поскольку оно определяет значение тока, проходяще­го через человека, и приложенного к нему напряжения,.

Сопротивление тела человека колеблется от нескольких сот Ом до 2 кОм.

Тело человека является проводником электрического тока. Проводимость живой ткани в отличие от обычных про­водников обусловлена физическими свойствами, сложнейшими биохимическими и биофизическими процес­сами, присущими лишь живой материи.

В результате сопротивление тела человека является пере­менной величиной, имеющей нелинейную зависимость от мно­жества факторов, в том числе от состояния кожи, параметров электрической цепи, физиологических факторов и состояния окружающей среды.

В живой ткани нет свободных электронов, и поэтому она не может быть уподоблена металлическому проводнику, электри­ческий ток в котором представляет собой упорядоченное дви­жение свободных электронов

Роговой слой кожи имеет наибольшее сопротивление, особенно мозоли. Мягкие ткани имеют гораздо меньшее сопротивление

а) схема кожи как конденсатора; б), в) схема замещения.

Сопротивление тела человека, т. е. сопротивление между двумя электродами, наложенными на поверх­ность тела, можно условно считать состоящим из трех последовательно включенных сопротивлений: двух оди­наковых сопротивлений наружного слоя кожи, составляющими так назы­ваемое наружное сопротивление тела человека, и одно­го, называемого внутренним сопротивлением тела, которое включает в себя два сопротивления внутреннего слоя кожи и сопротивление внутренних тка­ней тела

R внутр.магк.тк.= 300–500 Ом;

r вхкожи. = 1 кОм –100 кОм;

с вхкожи. = 0,01 мФ; при расчетах обычно пренебрегают.

R h (~, =) min для всех расчетов = 1000 Ом.

Состояние кожи сильно влияет на величину сопротивления тела человека. Так, порезы, царапины, ссадины и другие микротравмы, могут снизить сопротивление те­ла до значения, близкого к значению его внутреннего сопротивления, т. е. до 500–700 Ом, увеличивая опасность поражения человека током.

Такое же влияние оказывает и увлажнение кожи водой или за счет пота. повышая ее проводимость.

Таким образом, работа с электроустановками сыры­ми руками или в условиях, вызывающих увлажнение каких-либо участков кожи, а также при повышенной температуре воздуха или при других условиях, вызы­вающих усиленное потовыделение, усугубляет опас­ность поражения человека током.

Загрязнение кожи различными веществами и в осо­бенности хорошо проводящими электрический ток (ме­таллическая или угольная пыль) сопровождается снижением ее сопротивления.

На сопротивление тела оказывает влияние площадь контактов, а также место их приложения, так как у одного и того же человека со­противление кожи неодинаково на разных участ­ках тела.

Наименьшим сопротивлением обладает кожа лица, шеи, рук на участке выше ладоней, тыльной стороны ладоней, подмышечных впа­дин, и др.

Чем меньше сопротивление кожи, а, следовательно, тела в целом, тем больший ток прохо­дит через человека и тем опаснее исход поражения его током. Данное обстоятельство нередко приходится учи­тывать в практической деятельности. Например, при работе под напряжением на воздушной линии 127–380 В (по исправлению уличного освещения, заме­не перегоревшего предохранителя на вводе в дом и т. п.), кроме обычных защитных средств – диэлектрических перчаток, инструмента с изолированными рукоятками и т. п., необходимо надевать изолирующий шлем или обычный головной убор, поскольку случайное прикос­новение головой к проводам приводит к тяжелым по­следствиям. Рукава спецодежды должны быть опуще­ны и по возможности застегнуты у запястья.

Величина R h нелинейная – уменьшается с увеличением тока, напряжения и со временем воздействия.

Значение тока и длительность его прохождения через тело человека оказывают не­посредственное влияние на сопротивление тела: с уве­личением тока и времени его прохождения сопротивле­ние падает, поскольку при этом усиливается местный нагрев кожи, что приводит к расширению ее сосудов, а следовательно, к усилению снабжения этого участка кровью и увеличению потовыделения.

С ростом напряжения, приложенного к телу человека, происходит уменьшение в десятки раз сопро­тивления кожи, а следовательно, и сопротивления тела в целом, которое приближается к сопротивлению внут­ренних тканей тела, т. е. к своему наименьшему значе­нию 300–500 Ом. Это можно объяснить электрическим пробоем рогового слоя кожи, который про­исходит при напряжении 50-200 В, увеличением тока, проходящего через кожу (за счет повышения прило­женного напряжения), и др.

Сопротивление человека зависит также от рода и частоты тока. При постоянном токе полное сопротивление тела z h оказывается равным активному сопротивлению R h . При переменном токе z h меньше R h. С увеличением частоты переменного тока z h будет уменьшаться. При 2500–5000 Гц z h ненамного отличается от внутреннего сопротивления R в, а при 10–20 кГц и больше можно считать, что наружный слой кожи практически утрачи­вает сопротивление электрическому току и, следова­тельно, z h = R в.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: