Синтез гормонов человека с помощью трансгенных микроорганизмов

Вторым классом лекарственных препаратов, производимых биотехнологическим путем, являются гормоны. В медицинских целях применяются два основных типа гормонов, различающихся по молекулярному строению: стероидные и пептидные. Среди стероидных гормонов можно выделить кортизон и преднизолон, которые широко применяют при лечении различных аллергических заболеваний, в том числе такого тяжелого, как бронхиальная астма, а также ревматоидного артрита и других недугов. Другой обширной группой стероидов являются половые гормоны, такие как эстроген, широко применяемые для оральной контрацепции и лечения ряда заболеваний.

Пептидные гормоны сейчас практически целиком производятся путем синтеза с помощью генетически модифицированных микроорганизмов.

В настоящее время кишечная палочка (E. coli) стала поставщиком таких важных гормонов как инсулин и соматотропин. Ранее инсулин получали из клеток поджелудочной железы животных, поэтому стоимость его была очень высока. Для получения 100 г кристаллического инсулина требуется 800–1000 кг поджелудочной железы, а одна железа коровы весит 200–250 грамм. Это делало инсулин дорогим и труднодоступным для широкого круга диабетиков. В 1978 году исследователи из компании "Генентек" впервые получили инсулин в специально сконструированном штамме кишечной палочки. Инсулин состоит из двух полипептидных цепей А и В длиной 20 и 30 аминокислот. При соединении их дисульфидными связями образуется нативный двухцепочечный инсулин. Было показано, что он не содержит белков E. coli, эндотоксинов и других примесей, не дает побочных эффектов, как инсулин животных, а по биологической активности от него не отличается. Впоследствии в клетках E. coli был осуществлен синтез проинсулина, для чего на матрице РНК с помощью обратной транскриптазы синтезировали ее ДНК-копию. После очистки полученного проинсулина его расщепили и получили нативный инсулин, при этом этапы экстракции и выделения гормона были сведены к минимуму. Из 1000 литров культуральной жидкости можно получать до 200 граммов гормона, что эквивалентно количеству инсулина, выделяемого из 1600 кг поджелудочной железы свиньи или коровы.

Соматотропин - гормон роста человека, секретируемый гипофизом. Недостаток этого гормона приводит к гипофизарной карликовости. Если вводить соматотропин в дозах 10 мг на кг веса три раза в неделю, то за год ребенок, страдающий от его недостатка, может подрасти на 6 см. Ранее его получали из трупного материала, из одного трупа: 4–6 мг соматотропина в пересчете на конечный фармацевтический препарат. Таким образом, доступные количества гормона были ограничены, кроме того, гормон, получаемый этим способом, был неоднороден и мог содержать медленно развивающиеся вирусы. Компания "Genentec" в 1980 году разработала технологию производства соматотропина с помощью бактерий, который был лишен перечисленных недостатков. В 1982 году гормон роста человека был получен в культуре E. coli и животных клеток в институте Пастера во Франции, а с 1984 года начато промышленное производство инсулина и в СССР. При производстве интерферона используют как E. coli, S. cerevisae (дрожжи), так и культуру фибробластов или трансформированных лейкоцитов. Аналогичными методами получают также безопасные и дешевые вакцины.

Практическое занятие №7

Тема: Получение трансгенных растений, устойчивых к неблагоприятным факторам внешней среды

Создание трансгенных растений позволяет решить целый комплекс проблем, как агротехнических и продовольственных, так и технологических, фармакологических и т.д. Сегодня выделяется два основных направления, по которым развивается генная инженерия растений. Первое направление, получившее неудачное название «молекулярная селекция» (molecular breeding), специализируется на решении новыми методами традиционных селекционно-генетических проблем повышения продуктивности сельскохозяйственных растений и их защиты от различных биотических и абиотических стрессовых факторов. Второе направление, названное «метаболической инженерией», специализируется на получении и использовании трансгенных растений в качестве биореакторов, продуцирующих ценные для промышленности и медицины органические соединения (подробнее данное направление будет рассмотрено на восьмом практическом занятии).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: