Механизмы излучения космических тел в разных диапазонах спектра. Виды спектра: линейчатыйспектр, непрерывный спектр, рекомбинационное излучение

Рекомбинационное излучение

Радиативная рекомбинация

При радиативной рекомбинации доля кинетической энергии рекомбинирующего электрона крайне мала в энергии испускаемого фотона hν = ξi + mev2 (ξi -потенциал ионизации уровня, на который рекомбинирует электрон. Так как почти всегда Ei>>mv₂/2, то большая часть выделяющееся энергии не тепловая. Поэтому радиативная рекомбинация в общем случае малоэффективна для охлаждения газа. Однако мощность излучения единицы объёма из-за радиативной рекомбинации для равновесной среды с Т<105 превосходит потери на тормозное излучение.

Диэлектронная рекомбинация

Диэлектронная рекомбинация состоит из двух этапов. Сначала энергичный электрон возбуждает атом или ион так, что образуется неустойчивой ион с двумя возбужденными электронами. Далее либо электрон испускается и ион перестаёт быть неустойчивым (автоионизация), либо испускается фотон с энергией порядка потенциала ионизации и ион вновь становиться устойчивым. Для того, чтобы возбудить атом нужен очень быстрый электрон, с энергией выше средней. Понижая количество быстрых электронов мы понижаем среднюю энергию системы, среда охлаждается. Данный механизм охлаждения начинает доминировать над радиативной рекомбинацией при T>105 К. то большая часть выделяющееся энергии не тепловая. Поэтому радиативная рекомбинация в общем случае малоэффективна для охлаждения газа. Однако мощность излучения единицы объёма из-за радиативной рекомбинации для равновесной среды с Т<105 превосходит потери на тормозное излучение.

Анализ изучения - наиболее важный астрофизический метод; с его помощью получена основная часть наших знаний о космических объектах.Тепловое излучение. Всякое, даже слабо нагретое тело излучает электромагнитные волны. Однако при низких температурах, не превышающих 1000 градусов по шкале Кельвина, излучаются главным образом инфракрасные лучи и радиоволны. По мере дальнейшего нагревания спектр теплового излучения меняется: во-первых,увеличивается общее количество излучаемой энергии, во-вторых, появляются лучи все более и более коротких длин волн - видимые, ультрафиолетовые, рентгеновские и т.д. При каждом данном значении температуры нагретое тело излучает сильнее всего в некоторой области спектра, определяющей видимый цвет объекта.. Однако точное распределение энергии и конкретный вид спектра в общем случае зависят не только от температуры, но и от химического состава и физического состояния светящегося тела.Излучение абсолютно черного тела. Особую роль играет один частный случай, для которого законы теплового излучения имеют наиболее простой вид. Если излуч тело полностью изолировать от окруж среды идеально теплонепроницаемыми стенками, то после того как всюду в его пределах температура станет одинаковой, оно придет в состояние теплового равновесия. Однако часто встреч усл, близкие к термодинамич равновесию, например, когда излучающее тело, скажем,внутренние слои звезды, окружено сильно непрозрачным слоем газа - атмосферой.

закон смещения максимума излучения Вина: с увелич температуры макс излучения абсолютно черного тела смещается в коротковолновую область спектра.По мере увеличения температуры меняется не только цвет излучения, но и его мощность.

Доля излучения, поглощаемая данным телом в некотором участке спектра, называется поглощательной способностью. Поэтому для абсолютно черного тела отношение излучательной и поглощательной способности равно функции Планка. Элементарные процессы излучения и поглощения. Разреженные газы дают линейчатые спектры, в которых излучение сосредоточено в узких участках - ярких спектральных линиях,характеризующихся определенными значениями длин волн. Расположение и количество спектральных линий в различных участках спектра зависит от химического состава излучающего газа, а также от его температуры и плотности.

При некотором критическом значении внутренней энергии электрон отрывается от атома и начинает двигаться как свободная частица. Этот процесс наз ионизацией, а критическое значение энергии - энергией ионизации.. Если энергия ионизующей частицы или кванта превышает энергию ионизации,то оторванный электрон получает вдобавок остаток этой энергии в виде кинетической энергии своего свободного движения. Это является причиной, например, того, что горячие звезды, излучающие много ультрафиолетовых квантов,нагревают вокруг себя газ: каждый мощный квант, поглощенный нейтральным атомом,не только ионизует его, но и придает электрону большую скорость; сталкиваясь с другими свободными частицами, оторванные электроны отдают им часть своей кинетической энергии, нагревая тем самым газ.

Встречаясь с ионом, электрон может вернуться "на место" в связанное с атомом состояние, выделяя при этом квант с энергией, равной сумме своей кинетической энергии и энергии ионизации. В результате такой рекомбинации возникает другой важный тип излучения, имеющий непрерывный спектр. В отличие от линейчатого, в нем интенсивность плавно меняется в пределах большой области.Медленные электроны, скорость которых близка к нулю, рекомбинируя, образуют кванты с энергиями, близкими к энергии ионизации. Все остальные электроны,имеющие большие скорости, дают более коротковолновое излучение. Поэтому непрерывное излучение, образующееся при рекомбинации свободных электронов на каждый Данный энергетический уровень атома, имеет резкую границу с красного конца спектра. В коротковолновой области оно постепенно ослабевает. Это связано с тем, что более мощные кванты возникают при рекомбинации более быстрых электронов, количества которых при данной температуре газа, как мы видели,экспоненциально убывает.Непрерывный спектр (континуум) в виде слабого фона наблюдается в спектрах наиболее плотных и ярких туманностей, в которых велика общая масса светящегося газа.

Область спектра Длины волн Прохождение через земную атмосферу Методы исследования
γ-излучение ≤ 0,01 нм Сильное поглощение молекулами воздуха Внеатмосферные
Рентгеновское излучение 0,01 – 10 нм То же Внеатмосферные
Далёкий УФ 10 – 310 нм То же Внеатмосферные
Близкий УФ 310 – 390 нм Слабое поглощение С поверхности Земли
Видимое излучение 390 – 760 нм Слабое поглощение С поверхности Земли
ИК излучение 0,76 – 15 мкм Полосы поглощения Частично с поверхности Земли
  15 мкм – 1 мм Сильное поглощение С аэростатов
Радиоволны ≥ 1 мм Частичное поглощение С поверхности Земли

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: