Упорядоченным множеством (или кортежем) называется последовательность элементов, то есть совокупность элементов, в которой каждый элемент занимает определенное место. Сами элементы — компоненты кортежа.
Пример 1. Множество людей, стоящих в очереди, множество слов в фразе, алфавит. Во всех этих множествах место каждого элемента является вполне определенным и не может быть произвольно изменено.
Число элементов кортежа называется его длиной. Обозначают кортеж скобками «< >», иногда круглыми «()». А=<a1, a2,..., an>. Кортежи длины 2 называются упорядоченными парами, 3 — тройками, n-ками.
Частный случай: кортеж длины 1 — <a>
кортеж длины 0 — < > или ∧ — пустой кортеж.
Отличие кортежа и обыкновенного множества: в кортеже могут быть одинаковые элементы.
Упорядоченные множества, элементами которых являются вещественные числа, будем называть векторами или точками пространства (n-мерного).
Так, кортеж <a1, a2> может рассматриваться как точка на плоскости или вектор, проведенный из начала координат в данную точку. Тогда компоненты a1, a2 — проекции вектора на оси 1 и 2.
Пр1 <a1, a2> = a1, Пр2 <a1, a2> = a2, Прi <a1, a2, a3>= ai, Пр12 <a1, a2, a3>= <a1, a2> — двухэлементный кортеж. Проекция кортежа на пустое множество осей — пустой кортеж.
Обобщая эти понятия, будем рассматривать упорядоченное n-элементное множество вещественных чисел (a1,..., an) как точку в воображаемом n–мерном пространстве (иногда называемом гиперпространством), или как n-мерный вектор. При этом компоненты n-элементного кортежа а будем рассматривать как проекции этого кортежа на соответствующие оси.
Прi a = ai, i=1,2,...,n
Прi,j,...,l a = <ai, aj,..., al>, i=1,2,...,n
Два вектора равны, если они имеют одинаковую длину и соответствующие координаты их равны.
<a1,..., am> = <b1,..., bn> ⇔ m = n и a1 = b1, b1 = b2,...
Компонентами кортежа (вектора) могут быть также компоненты кортежи (векторы):
Пример. Слова в предложении,
A = < <a1, a2>, <a1, a3>, <a2, a3> >