double arrow
IV. Исследование функций с помощью производных

27. Условия возрастания и убывания функции. Точки экстремума. Необходимые условия экстремума. Достаточные признаки существо­вания экстремума. Отыскание наибольшего и наименьшего значений непрерывной на отрезке функции.

28. Исследование функции на экстремум с помощью производных высшего порядка. Исследование функций на выпуклость и вогнутость. Точки перегиба. Асимптоты кривых. Общая схема построения графиков функций.

V. Неопределенный интеграл.

29. Первообразная. Неопределенный интеграл, его свойства. Таб­лица основных формул интегрирования. Непосредственное интегрирова­ние по частям и подстановкой.

30. Интегрирование рациональных функций путем разложения на простейшие дроби. Интегрирование выражений, содержащих тригоно­метрические функции. Интегрирование некоторых иррациональных выражений. Использование таблиц интегралов.

VI. Определенный интеграл.

31. Задачи, приводящие к понятию определенных интегралов. Определенный интеграл как предел интегральных сумм. Основные свойcтва определенного интеграла.

32. Производная интеграла по верхнему пределу. Формула Нью­тона — Лейбница.

33. Вычисление определенного интеграла: интегрирование по час­тям и подстановкой. Приближенное вычисление определенного интегра­ла: формулы прямоугольников, трапеций и Симпсона.

34. Приложение интегралов к вычислению площадей плоских фигур, длин дуг кривых, объемов тел и площадей поверхностей враще­ния. Физические приложения определенного интеграла.




35. Несобственные интегралы с бесконечными пределами. Несоб­ственные интегралы от неограниченных функций, основные свойства. Абсолютная и условная сходимости. Признаки сходимости.

VII. Функции нескольких переменных.

36. Функции нескольких переменных. Область определения. Предел функции. Непрерывность.

37. Частные производные. Полный дифференциал и его связь с частными производными. Инвариантность формы полного дифферен­циала. Касательная плоскость и нормаль к поверхности. Геометрический смысл полного дифференциала.

38. Частные производные и полные дифференциалы высших по­рядков. .Формула Тейлора.

39. Неявные функции. Теоремы существования. Дифференцирова­ние неявных функций.

40. Экстремумы функции нескольких переменных. Необходимое

условие. Достаточные условия.

41. Условный экстремум. Метод множителей Лагранжа.






Сейчас читают про: