Действие излучений на ткани, органы и системы организма

Ткани организма весьма различаются по радиочувствительности. Если гибель лимфоцитов или костномозговых клеток удается зарегистрировать после облучения в дозах, равных десятым долям грея, то мышечные и нервные клетки выдерживают нередко дозы в десятки грей. Ими было сформулировано правило, согласно которому ткани тем более радиочувствительны, чем выше пролиферативная активность составляющих их клеток, и тем более радиорезистентны, чем выше степень их дифференцировки. Таким образом, чувствительность органов к ионизирующим излучениям зависит от скорости деления клеток в этих органах и возрастает с увеличением скорости деления клеток.

Хотя радиочувствительность тканей определяется главным образом радиочувствительностью составляющих эту ткань клеток, нельзя сбрасывать со счетов и опосредованные влияния радиации через поражение регулирующих систем – нервной, эндокринной. Кроме того, радиочувствительность органа зависит от его функционального состояния. Так, чувствительность обычно повышается при усилении функции органа (молочной железы в периоде лактации, щитовидной железы в состоянии гипертериоза и т.д.).

Во взрослом организме, в соответствии с правилом Бергонье и Трибондо, непролиферирующие высокодифференцированные нервные клетки высокорадиорезистентны. Однако это относится лишь к морфологическим проявлениям повреждения. Функциональные же реакции нейронов обнаруживаются в ответ на облучение уже в ничтожных дозах. Так, ранние изменения электроэнцефалограммы появляются после облучения в дозе 0,5 мГр, облучение в дозе 1 мГр вызывает заметное удлинение времени рефлекса в ответ на электрораздражение.

Система крови обеспечивает поддержание постоянного числа функциональных клеток, обладающих короткой продолжительностью жизни. Наиболее чувствительной тканью к действию ионизирующих излучений в организме млекопитающих является костный мозг. Послелучевые изменения, происходящие в системе клеточного обновления рассмотрены на примере гранулоцитопоэза. Одним из важных эффектов является приостановка клеточного деления (блок митозов), которая тем продолжительнее, чем выше доза облучения. По выходе из блока часть клеток, в которых повреждения ядерной ДНК не были репарированы, подвергается репродуктивной гибели. Часть клеток погибает по интерфазному типу. С повышением дозы число погибающих клеток увеличивается. Наиболее радиочувствительны клетки стволового отдела (D0 составляет около 1 Гр), и по критерию утраты способности к образованию колоний дочерних клеток число стволовых клеток резко снижается практически сразу после облучения. Высокой радиочувствительностью обладают и клетки пула пролиферации. Что же касается клеток пула созревания, то их радиочувствительность сравнительно невысока, большинство этих клеток сохраняют жизнеспособность, созревают и выходят в периферическую кровь. Начало снижения содержания в крови отдельных видов функциональных клеток после облучения и срок, когда глубина этого снижения максимальна, зависят главным образом от времени, в течение которого клетки-предшественники находятся в составе пулов пролиферации, созревания, а также от продолжительности циркуляции в крови созревших клеток. Эти параметры различны как для разных клеточных линий. У человека прохождение предшественников гранулоцитов через пул пролиферации занимает 4–6 дней и примерно столько же времени – прохождение через пул созревания. Зрелые гранулоциты циркулируют в крови в среднем всего 8–10 ч. В соответствии с этими сроками нейтропения у человека начинает обнаруживаться примерно через 5 сут. после облучения. Продолжительность пребывания в крови человека тромбоцитов оценивается в 6–8 дней и минимальный их уровень достигается через 2–2,5 нед. Длительность жизни эритроцитов в крови составляет 100–120 дней. Поражение зрелых эритроцитов после облучения в дозах, составляющих несколько грей, невелико и поэтому даже в случае полного прекращения продукции новых эритроцитов их число в сутки может снизиться примерно на 1% и анемия развивается очень медленно (если не возникнет кровотечения).

Причина развития нейтропении в условиях общего облучения - гибель и снижение пролиферативной активности костномозговых предшественников.

Поражение кроветворения и связанные с ним клинические проявления, в первую очередь инфекционные осложнения и повышенная кровоточивость, получили наименование костномозгового синдрома, который лежит в основе одноименной формы ОЛБ, развивающейся после облучения в дозах 1–10 Гр.

Со стороны пролиферирующих клеток костного мозга в течение первых суток после облучения в среднелетальных дозах обнаруживаются следующие эффекты:

- торможение митотической активности;

- хромосомные аберрации в делящихся клетках;

- пикнотические изменения ядер некоторых клеток;

При общем облучении среди органов желудочно-кишечного тракта наиболее значимо поражение эпителия слизистой оболочки тонкой кишки. На дне крипт находятся стволовые клетки. По мере деления стволовых клеток и последующего их созревания клетки продвигаются по направлению к устью крипт и далее по стенке ворсинки к ее верхушке, откуда слущиваются в просвет кишки. Утрата клеток с ворсинок сбалансирована притоком вновь образованных клеток из крипт. Продвижение клетки от дна крипты до верхушки ворсинки занимает около 4 сут. Как и в других системах клеточного обновления, в эпителии кишки после облучения наступает временный блок митозов, погибают прежде всего стволовые и другие делящиеся клетки. Созревающие и функциональные клетки, будучи радиорезистентны (D0 составляет 15 Гр), после облучения продолжают продвижение к верхушкам ворсинок и слущиваются. Эпителиальная выстилка кишки при отсутствии пополнения за счет клеточного деления быстро исчезает, ворсинки «оголяются» и уплощаются.

Описанные изменения слизистой оболочки тонкой кишки, достигающие в случае общего облучения максимальной выраженности при дозах, превышающих 10 Гр, лежат в основе развития так называемого кишечного синдрома. Другие отделы желудочно-кишечного тракта менее радиочувствительны, чем тонкая кишка, и их повреждение при общем облучении чаще всего не имеет самостоятельного значения.

Выраженные морфологические проявления поражения клеток центральной нервной системы наблюдаются, как правило, только после воздействия в дозах, приближающихся к 50 Гр и выше. Наиболее ранние изменения обнаруживаются в синапсах (слипание синаптических пузырьков в скоплениях, появляющихся в центральной части пресинаптических терминалов или в активной зоне). При световой микроскопии через 2 ч после облучения в таких дозах обнаруживается набухание клеток, пикноз ядер зернистых клеток мозжечка, реже – других нейронов, явления васкулита, менингита, хориоидального плексита с гранулоцитарной инфильтрацией. Максимум изменений приходится на 1-е сут после облучения. При более высоких дозах может наблюдаться ранний некроз ткани мозга. При облучении в дозах 10–30 Гр в клетках центральной нервной системы обнаруживают угнетение окислительного фосфорилирования. Последнее связывают с дефицитом АТФ, расходуемого в процессе репарации вызванных облучением разрывов ДНК. Развиваются очаги так называемого реактивного состояния нервных клеток: набухание нейронов, повышение аргирофильности. При этом погибают, как правило, лишь отдельные нейроны. Распространенные очаговые изменения в вегетативных ганглиях могут явиться одной из причин дискоординации функций внутренних органов.

Расстройства нервной системы могут проявляться и непосредственными клиническими симптомами, как, например, при остром пострадиационном ЦНС-синдроме, при первичной реакции на облучение и нарушениями регуляции вегетативных функций, процессов восстановления поврежденных тканей. После облучения в дозах порядка нескольких десятков Грей нарушения функций центральной нервной системы лежат в основе развития церебральных формы ОЛБ, определяющих клиническую картину поражения организма.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: