Оптимальный фильтр для периодической последовательности радиоимпульсов

Особенно явно преимущества корреляционного фильтра, использующего импульсный опорный сигнал, проявятся при приеме радиоимпульсов с высокочастотным заполнением. В этом случае в качестве узкополосного элемента целесообразно использовать резонансный усилитель, обеспечивающий и необходимое усиление сигнала. В этом варианте корреляционный фильтр — это известный супергетеродинный приемник, но с импульсным гетеродином и достаточно узкополосным усилителем промежуточной частоты.

Легко убедиться, что если опорный, (гетеродинный) сигнал это радиоимпульс с несущей частотой и частотой повторения , то данный приемник-фильтр будет иметь гребенчатую характеристику.

Действительно, будем снимать АЧХ устройства, опять подавая на вход смесителя испытательный гармонический сигнал с медленно изменяющейся частотой. При этом будем использовать импульсный гетеродин и обеспечим, что ширина полосы пропускания резонансного усилителя будет много меньше, чем частотный интервал между гармониками в спектре опорного сигнала — гетеродина . Тогда всякий раз, когда разность (или сумма) текущей частоты испытательного сигнала с некоторой гармоникой гетеродина оказывается равной (в пределах полосы ) сигнал проходит через узкополосный усилитель. Это будет гармонический сигнал промежуточной частоты с частотой . И так будет повторяться каждый раз, когда разность или сумма частот испытательного сигнала и какой либо изгармоник (n) гетеродина равны . Таким образом, очевидно, что амплитудно-частотная характеристика приемника-фильтра будет иметь вид «гребенки». Ширина и форма «зубца» определяется частотной характеристикой узкополосного резонансного усилителя, а положение «зубцов» на шкале частот — положением гармоник гетеродина и номиналом . Теперь рассмотрим процесс в приемнике-фильтре при включении на его вход периодической последовательности радиоимпульсов. Анализ будем проводить с двух точек зрения: временной и спектральной.

Начнем с временной. Предположим, что последовательность импульсов опорного сигнала-гетеродина медленно смещается относительно последовательности входных радиоимпульсов. Такое предположение означает, что частоты повторения импульсов в этих последовательностях отличаются, но так что бы .

На рисунке 19 изображены три относительных положений импульсов во времени.

рис.16.8.

Импульсы частично перекрываются во времени, импульсы совпадают, импульсы разнесены. Очевидно, что во втором случае сигнал промежуточной частоты будет иметь максимальное значение, при разносе их во времени , а при частичном перекрытии (||) выходной сигнал будет иметь отличное от нуля значение, но . Зависимость амплитуды гармонического сигнала промежуточной частоты от величины их «задержки» — относительного положения во времени будет описываться корреляционной функцией, как это было показано выше для одиночных сигналов. Только теперь эта корреляционная функция будет периодической функцией с периодом Т.

рис.16.9.

Рассмотрим теперь этот процесс с частотной, спектральной точки зрения. Так как оба сигнала, и входящий, и опорный являются радиоимпульсами с различной несущей ( и ), но с одинаковыми частотами повторения , то каждому соответствует линейчатый (дискретный) спектр с некоторой эффективной шириной. Их спектры разнесены по шкале частот на номинал промежуточной частоты.

Для определенности будем считать, что . Очевидно, что в результате перемножения входного и опорного каждая из гармоник даст сумму гармонических сигналов на частотах . Так как полоса резонансного фильтра принята меньше, чем интервал между гармониками (), то из богатого спектра комбинационных частот после умножителя узкополосным фильтром будут отфильтрованы только гармонические сигналы с частотами равными промежуточной, т.е.

Результирующий гармонический сигнал промежуточной частоты на выходе резонансного фильтра есть векторная сумма „парциальных“ сигналов, получаемых от взаимодействия каждой гармоники спектра с соответствующей гармоникой спектра опорного гетеродина .

Фазы этих „парциальных“ векторов будут различны и изменяться при изменении относительного положения импульсов сигнала и гетеродина во времени. Здесь нужно различать способы формирования опорного (гетеродинного) радиоимпульса.

Первый способ — ударное возбуждение радиоимпульса: фаза ВЧ заполнения жестко привязана к огибающей. При изменении задержки такой импульс смещается как целое. Фазы гармоник его спектра изменяются так , т. е. все вектора, представляющие парциальные сигналы, вращаются, но разной „скоростью“.

Векторная сумма зависит от взаимного положения „парциальных“ векторов, от их взаимных разностей фаз Качественно картина меняется так: при разносе импульсов во времени эти вектора расположены „веером“ так, что их векторная сумма равна нулю. При частичном перекрытии „веер“ частично „схлопывается“, что дает некоторую отличную от нуля амплитуду суммарного сигнала. Наконец, при совпадении импульсов во времени „веер“ складывается, все „парциальные“ вектора оказываются в фазе, что обеспечивает максимальное значение результирующей амплитуды сигнала промежуточной частоты.

Заметим, что фаза результирующего сигнала промежуточной частоты (положение суммарного вектора) будет изменяться на всем интервале изменения задержки , от начала „перекрытия“ импульсов () во времени, до полного их разноса ().

Рис.16.10.

Рис.16.11.

Рассмотрим другой способ формирования опорных радиоимпульсов, импульсов гетеродина. При этом способе из непрерывного гармонического сигнала на частоте путем импульсной амплитудной модуляции формируется также периодическая последовательность опорных радиоимпульсов. Очевидно, что в этом варианте фаза и огибающая опорных импульсов не будут жестко связаны. Покажем, что при этом фаза сигнала промежуточной частицы на выходе узкополосного резонансного фильтра не будет зависеть от взаимного временного положения периодических последовательностей входного и опорного сигналов. Дело в том, что при формировании опорных импульсов путем модуляции при изменении задержки модулирующего видеоимпульса фаза гармоники на центральной частоте спектра остается постоянной. Гармоники же в верхней и нижней полосах этого спектра будут получать при изменении приращения фаз разных знаков . Это приводит к тому, что после перемножения со входным сигналом и фильтрации узкополосным резонансным фильтром „парциальных“ сигналов на частоте результирующий сигнал на этой частоте не будет изменять своей фазы при изменении задержки. Это утверждение справедливо при условии, что спектры как принимаемого , так и опорного (гетеродинного) сигналов симметричны относительно своих несущих частиц ВЧ заполнения. Качественно зависимость параметров выходного сигнала от задержки так же удобно проиллюстрировать с помощью векторных диаграмм, аналогичных рассмотренным выше.

Различие будет лишь в том, что направление (аргумент) вектора парциального сигнала от взаимодействия центральных частот спектров входного и опорного сигналов остается постоянным при изменении задержки на интервале . Тогда как „парциальные“ вектора, соответствующие верхней и нижней полосам спектров при изменении теперь вращаются в разные стороны, образуя опять „веера“. Понятно, что векторная сумма будет зависеть от степени раскрытия такого»веера «, причем аргумент суммарного вектора будет сохранять свою величину, так как „парциальные“ вектора, соответствующие верхней и нижней полосе спектра, получают симметричные приращения, но разных знаков, „Веер“ остается симметричным с неподвижным центральным вектором. Модуль суммарного вектора будет описываться взаимокорреляционной функцией и , зависящей от .

Рис.16.12.

Рассмотрим теперь возможный вариант, когда значения частот заполнения радиоимпульсов принимаемого и опорного совпадают. В этом случае после перемножителя следует включить узкополосный низкочастотный фильтр, выделяющий „постоянную“ составляющую, величина и знак которой будут изменяться при изменении относительного положения принимаемого и опорного импульсов во времени. Такой выходной сигнал будет описываться взаимокорреляционной функцией. Вид этой функции (при равной длительности импульсов) качественно изображен на рис 23.,а описывается она формулой (4.34). Выходной сигнал в этом случае описывается осциллирующей функцией по аргументу t — относительному сдвигу этих импульсов во времени. Понятно, что для периодически повторяющихся импульсов их взаимокорреляционная функция будет также периодической по t с периодом их следования.

Рис. 16.13.

При и 0

Оценим теперь отношение сигнал/шум на выходе корреляционного гребенчатого

фильтра, оптимального для приёма периодической последовательности радиоимпульсов. Выше было показано, что оптимальный фильтр для гармонического сигнала обеспечивает отношение сигнал/ шум по мощности (16.28)

и по амплитуде (16.29)

Гдеb=Dw — полоса узкополосного резонансного фильтра.

В данном случае оптимальный фильтр для приёма периодической последовательности радиоимпульсов имеет также единственный резонансный фильтр с узкой полосой. Поэтому для каждого „зубца“ гребёнки и каждой гармоники спектра входного сигнала будем иметь такое же отношение сигнал/шум, как и для элементарного гармонического сигнала. По отношению к входному сигналу умножитель — это линейное параметрическое устройство. Поэтому результат воздействия спектра гармоник и результат воздействия шума можно рассматривать независимо.

Относительно гармоник спектра сигнала выше было показано, что при совмещении во времени радиоимпульсов входной и опорной последовательностей радиоимпульсов все гармоники парциальных составляющих спектра на частоте . суммируются в фазе. („веер“ парциальных векторов схлопывается). Составляющие шума, прошедшие отдельные зубцы гребёнки тоже сложатся, но по мощности! Поэтому можно считать, что эффективная полоса для шума будет определяться суммой полос отдельных полос зубцов гребёнки: (16.30).

Число членов в этой сумме ограничено и определяется эффективной шириной спектра опорных радиоимпульсов (импульсов гетеродина). Кроме того, ширина спектра мощности шума ограничивается входным полосовым фильтром. Поэтому искомое отношение сигнал/шум на выходе оптимального корреляционного фильтра определится так:

По мощности: , а по амплитуде (16.31)

В заключение обратим внимание, что в рассмотренном варианте гребёнчатая АЧХ реализуется за счёт линейчатого спектра (с некоторой эффективной шириной) импульсного опорного сигнала и единственного узкополосного резонансного усилителя промежуточной частоты. При этом, ширина полосы этого усилителя должна быть много меньше, чем интервал между частотами гармоник опорного сигнала (гетеродина).

Такой аналоговый коррелятор был реализован и практически использовался в станции наклонного зондирования ионосферы средневолнового диапазона. Для возможности оценки не только амплитуды и групповой задержки, но и фазы высокочастотного заполнения отраженных от ионосферы радиоимпульсов после узкополосного усилителя сигнал промежуточной частоты подавался на два параллельных фазовых детектора. Опорные гармонические сигналы на фазовых детекторах имели номинал и были сдвинуты по фазе на . Таким образом, на выходах фазовых детекторов получались синусная и косинусная составляющие огибающих суммарного сигнала. Это позволяло оценить соответствующие фазовые сдвиги высокочастотного заполнения „земного“ и отраженного радиоимпульсов, при условии, что эти радиоимпульсы были разделены во времени.

Рис. 16.14.

Рис. 16.15.

Пример наблюдаемой картинки на экране индикатора станции приведен на рис. Далее этот сигнал оцифровывался с помощью АЦП и поступал в ЭВМ для обработки.

При используемых параметрах зондирующих радиоимпульсов в диапазоне средних волн „земной“ и отраженный от ионосферы сигналы уверенно разделялись во времени. Величина задержки отраженного сигнала в приводимом эксперименте порядка 220 мкс.

Частота ВЧ заполнения радиоимпульсов приблизительно 350 кГц, приём велся на удалении 220 км. Приёмная аппаратура аналогово коррелятора имела узкополосный усилитель с шириной полосы 5 Гц, при частоте повторения излучаемых импульсов 625 Гц. Это позволяло надёжно выделить полезные сигналы на фоне шумов и помех в весьма загруженном СВ диапазоне, обеспечивался выигрыш в отношении сигнал/шум более 30-ти на выходе приёмного аналогово коррелятора по отношению ко входу. Очевидно, что располагая сигналом в цифровой форме было возможно и дальнейшее повышение отношения сигнал/шум, используя накопление.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: