Основные понятия и определения метрологии

Под измерениями понимают способ количественного позна­ния свойств физических объектов. Существуют различные физи­ческие объекты, обладающие разнообразными физическими свойствами, количество которых неограниченно. Человек в своем стремлении познать физические объекты — объекты познания — выделяет некоторое ограниченное количество свойств, общих в качественном отношении для ряда объектов, но индивидуаль­ных для каждого из них в количественном отношении. Такие свойства получили название физических величин.

Физические величины различают в качественном и количе­ственном отношении. Качественная сторона определяет «вид» величины (например, электрическое сопротивление), а количе­ственная — ее «размер» (например, сопротивление конкретного резистора). Таким образом, физическая величина — свойство, общее в качественном отношении для множества объектов и ин­дивидуальное в количественном отношении для каждого из них. Количественное содержание свойства, соответствующего поня­тию «физическая величина», в данном объекте — размер физиче­ской величины. Размер физической величины существует объек­тивно, вне зависимости от того, что мы знаем о нем.

В результате измерений человек получает знания об объектах в виде значений физических величин. Понятие «физическая величина» распространяют на свойства, изучаемые не только в физике, но и в других областях науки и техники.

В ГОСТ 16263—70 «Метрология. Термины и определения» дано определение понятия «измерение»: измерение — нахожде­ние значения физической величины опытным путем с помощью специальных технических средств.

В этом определении отражены следующие главные признаки понятия «измерение»:

а) измерять можно свойства реально существующих объек­тов познания, т. е. физические величины;

б) измерение требует проведения опытов, т. е. теоретические рассуждения или расчеты не могут заменить эксперимент;

в) для проведения опытов требуются особые технические средствасредства измерений, приводимые во взаимодействие с материальным объектом;

г) результатом измерения является значение физической ве­личины.

Принципиальная особенность измерения заключается в отра­жении размера физической величины числом. Число может быть выражено любым принятым способом, например комбина­цией цифр, комбинацией уровней электрических напряжений и т.д.

Значение физической величины — количественная оценка из­меряемой величины должна быть не просто числом, а числом именованным, т. е. результат измерения должен быть выражен в определенных единицах, принятых для данной величины. Толь­ко в этом случае результаты измерений, полученные различными средствами и разными экспериментаторами, сопоставимы.

Результат измерения практически всегда отличается от ис­тинного значения физической величины — значения, которое вы­ражает размер величины абсолютно точно. Истинное значение физической величины определить невозможно.

Отличие результата измерения от истинного значения объясняется несовершенством средств измерений, несовершенством способа применения средства измерений, влиянием условий вы­полнения измерения, участием человека с его ограниченными возможностями и т. д.

Отклонение результата измерения от истинного значения из­меряемой величины называют погрешностью измерения. Погреш­ность измерения Δx = x - xи, где х— измеренное значение; xи — истинное значение.

Поскольку истинное значение неизвестно, практически по­грешность измерения оценивают, исходя из свойств средства измерений, условий проведения эксперимента и анализа получен­ных результатов. Полученный результат отличается от истинного значения, поэтому результат измерения имеет ценность только в том случае, если дана оценка погрешности полученного значе­ния измеряемой величины. Причем чаще всего определяют не конкретную погрешность результата, а степень недостоверно­сти — границы зоны, в которой находится погрешность.

Часто применяют понятие «точность измерения», имея при этом в виду качество измерения, отражающее близость результа­та измерения к истинному значению измеряемой величины. Высокая точность измерения соответствует малой погрешности изме­рения.

Совокупность величин, связанных между собой зависимостя­ми, образуют систему физических величин. Объективно суще­ствующие зависимости между физическими величинами представ­ляют рядом независимых уравнений. Число уравнений т всегда меньше числа величин n. Поэтому m величин данной системы определяют через другие величины, а пт величин — независи­мо от других. Последние величины принято называть основными физическими величинами, а остальные — производными физиче­скими величинами.

В качестве основных могут быть выбраны любые из данного числа величин, но практически выбирают величины, которые могут быть воспроизведены и измерены с наиболее высокой точ­ностью. В области электротехники основными величинами приня­ты длина, масса, время и сила электрического тока.

Зависимость каждой производной величины от основных ото­бражается её размерностью. Размерность величины представля­ет собой произведение обозначений основных величин, возведен­ных в соответствующие степени, и является ее качественной характеристикой. Размерности величин определяют на основе соответствующих уравнений физики.

Физическая величина является размерной, если в ее размер­ность входит хотя бы одна из основных величин, возведенная в степень, не равную нулю. Большинство физических величин являются размерными. Однако имеются безразмерные (относи­тельные) величины, представляющие собой отношение данной физической величины к одноименной, применяемой в качестве исходной (опорной). Безразмерными величинами являются, на­пример, коэффициент трансформации, затухание и т. д.

Физические величины в зависимости от множества размеров, которые они могут иметь при изменении в ограниченном диапазо­не, подразделяют на непрерывные (аналоговые) и квантованные (дискретные) по размеру (уровню).

Аналоговая величина может иметь в заданном диапазоне бесконечное множество размеров. Таким является подавляющее число физических величин (напряжение, сила тока, температура, длина и т. д.). Квантованная величина имеет в заданном диапа­зоне только счетное множество размеров. Примером такой вели­чины может быть малый электрический заряд, размер которого определяется числом входящих в него зарядов электронов. Раз­меры квантованной величины могут соответствовать только определенным уровням — уровням квантования. Разность двух со­седних уровней квантования называют ступенью квантования (квантом).

Значение аналоговой величины определяют путем измерения с неизбежной погрешностью. Квантованная величина может быть определена путем счета ее квантов, если они постоянны.

Физические величины могут выть постоянными или перемен­ными во времени. При измерении постоянной во времени величи­ны достаточно определить одно ее мгновенное значение. Перемен­ные во времени величины могут иметь квазидетерминированный или случайный характер изменения.

Квазидетерминированная физическая величина величина, для которой известен вид зависимости от времени, но неизвестен измеряемый параметр этой зависимости. Случайная физическая величина — величина, размер которой изменяется во времени случайным образом. Как частный случай переменных во времени величин можно выделить дискретные во времени величины, т. е. величины, размеры которых отличны от нуля только в опреде­ленные моменты времени.

Физические величины делят на активные и пассивные. Актив­ные величины (например, механическая сила, ЭДС источника электрического тока) способны без вспомогательных источников энергии создавать сигналы измерительной информации (см. да­лее). Пассивные величины (например, масса, электрическое со­противление, индуктивность) сами не могут создавать сигналы измерительной информации. Для этого их нужно активизировать с помощью вспомогательных источников энергии, например при измерении сопротивления резистора через него должен проте­кать ток. В зависимости от объектов исследования говорят об электрических, магнитных или неэлектрических величинах.

Физическую величину, которой по определению присвоено числовое значение, равное единице, называют единицей физиче­ской величины. Размер единицы физической величины может быть любым. Однако измерения должны выполняться вобщепри­нятых единицах. Общность единиц в международном масштабе устанавливают международными соглашениями. Единицы физических величин, согласно которому в нашей стране введена к обяза­тельному применению международная система единиц (СИ).

При изучении объекта исследования необходимо выделить для измерений физические величины, учитывая цель измерении, которая сводится к изучению или оценке каких-либо свойств объекта. Поскольку реальные объекты обладают бесконечным множеством свойств, то для получения результатов измерений, адекватных цели измерений, выделяют в качестве измеряемых величин определенные свойства объектов, существенные при выбранной цели, т. е. выбирают модель объекта.

Измерение и егоосновные операции, уравнение измерения.




double arrow
Сейчас читают про: