Полезное увеличение

Таким образом, в оптическом микроскопе разрешаются объекты размером не менее 0,2 - 0,3 мкм. Для того, чтобы эти объекты были различимы также и глазом, увеличение Км микроскопа должно быть не меньше величины, определяемой соотношением пределов разрешения Zглаза и микроскопа Zм: Km = Zгл / Zм, подставляя в эту формулу значение Z, получим

Km = 2A Zгл / l.

Zглаза (на расстоянии наилучшего зрения) равно от 140 до 280 мкм. Подставляя их, а также l= 0,555 мкм в формулу, находим интервал значений полезного увеличения микроскопа: 500А < Kм < 1000А. Эти увеличения называют полезными, т.к. при них глаз различает все элементы структуры объекта, которые разрешимы микроскопом.

6. Специальные приемы микроскопии:

· измерение размеров малых объектов,

· микропроекция, микрофотография,

· метод фазового контраста,

· метод темного поля, ультрамикроскопия.

1. Измерение размеров малых объектов.

Определение величины микроскопируемого предмета делается с помощью нанесенных на стеклянную пластинку масштабных шкал, называемых окулярным и объектным микрометрами.

Окулярный микрометр помещают между линзами окуляра так, чтобы его шкала находилась в плоскости промежуточного изображения, образуемого объективом, При этом в окуляр наблюдается изображение шкалы, совмещенное с изображением микроскопируемого предмета. Учитывая цену деления шкалы микрометра, можно определить размер этого изображения, даваемого объективом, а разделив полученные данные на известное увеличение объектива Коб - действительные размеры предмета.

Если цена деления окулярного микрометра неизвестна, то ее можно определить с помощью объектного микрометра с известной ценой деления (обычно 0,01 мм). Объектный микрометр помещается на место препарата и в окуляр наблюдается совмещенное изображение обеих шкал.

2. Микропроекция и микрофотография.

Мнимый характер изображения в микроскопе обусловлен тем, что промежуточное действительное изображение, образуемое объективом, располагается ближе переднего фокуса окуляра. Если это условие нарушить, например, перевернуть окуляр так, что изображение, которое дает объектив, окажется дальше фокусного расстояния окуляра, то последний будет давать действительное изображение, которое может быть спроецировано на экран или фотопленку. Способ наблюдения на экране действительного изображения предмета называется микропроекцией. Обычно при этом микроскоп ставят горизонтально, и предмет освещают сильным источником света.

Фотографирование полученного таким образом действительного изображения называется микрофотографией. Обычно при этом употребляется специальная фотонасадка к микроскопу, которая представляет собой фотокамеру, надеваемую на окулярный конец тубуса микроскопа.

3. Метод фазового контраста служит для получения изображений прозрачных и бесцветных объектов, невидимых при наблюдении по методу светлого поля. К числу таких объектов относятся, например, живые неокрашенные животные ткани.

Метод основан на том, что даже при очень малых различиях в показателях преломления разных элементов препарата световая волна, проходящая через них, претерпевает разные изменения по фазе (приобретает т. н. фазовый рельеф). Эти фазовые изменения, не воспринимаемые непосредственно ни глазом, ни фотопластинкой, с помощью специального оптического устройства преобразуются в изменения амплитуды световой волны, т. е. в изменения яркости («амплитудный рельеф»), которые уже различимы глазом или фиксируются на фоточувствительном слое. Другими словами, в получаемом видимом изображении распределение яркостей (амплитуд) воспроизводит фазовый рельеф. Такое изображение называется фазово-контрастным.

Рис.3. Метод фазового контраста

На рис.3 в переднем фокусе конденсора 3 устанавливается апертурная диафрагма 2, отверстие которой имеет форму кольца. Её изображение возникает вблизи заднего фокуса объектива 5, и там же устанавливается т. н. фазовая пластинка 6, на поверхности которой имеется кольцевой выступ или кольцевая канавка, называемая фазовым кольцом. Фазовая пластинка может быть помещена и не в фокусе объектива (часто фазовое кольцо наносят прямо на поверхность одной из линз объектива), но в любом случае не отклоненные в препарате 4 лучи от осветителя 1, дающие изображение диафрагмы 2, должны полностью проходить через фазовое кольцо, которое значительно ослабляет их (его делают поглощающим) и изменяет их фазу на l/4 (l – длина волны света). В то же время лучи, даже ненамного отклоненные (рассеянные) в препарате, проходят через фазовую пластинку, минуя фазовое кольцо (штриховые линии), и не претерпевают дополнительного сдвига фазы. С учётом фазового сдвига в материале препарата полная разность фаз между отклоненными и неотклонёнными лучами оказывается близкой к 0 или l/2, и в результате интерференции света в плоскости изображения 4' препарата 4 они заметно усиливают или ослабляют друг друга, давая контрастное изображение структуры препарата. Отклоненные лучи имеют значительно меньшую амплитуду по сравнению с неотклонёнными, поэтому ослабление основного пучка в фазовом кольце, сближая значения амплитуд, также приводит к большей контрастности изображения. Метод позволяет различать малые элементы структуры, чрезвычайно слабо контрастные в методе светлого поля. Прозрачные частицы, сравнительно не малые по размерам, рассеивают лучи света на столь небольшие углы, что эти лучи проходят вместе с неотклонёнными через фазовое кольцо. Для подобных частиц фазово-контрастный эффект имеет место только вблизи их контуров, где происходит сильное рассеяние.

4. Метод темного поля, ультрамикроскопия.

Метод тёмного поля в проходящем свете (рис.3) применяется для получения изображений прозрачных неабсорбирующих объектов, невидимых при освещении по обычными методами. Свет от осветителя 1 и зеркала 2 направляется на препарат конденсором специальной конструкции – т. н. конденсором тёмного поля 3.

По выходе из конденсора основная часть лучей света, не изменившая своего направления при прохождении через прозрачный препарат, образует пучок в виде полого конуса и не попадает в объектив 5 (который находится внутри этого конуса). Изображение в микроскопе. создаётся лишь небольшой частью лучей, рассеянных микрочастицами находящегося на предметном стекле 4 препарата внутрь конуса, которые затем проходят через объектив. В поле зрения 6 на тёмном фоне видны светлые изображения элементов структуры препарата, отличающихся от окружающей среды показателем преломления. У крупных частиц видны только светлые края, рассеивающие лучи света. При этом методе по виду изображения нельзя определить, прозрачны

Рис.3. Метод темного поля в проходящем

свете

частицы или непрозрачны, больший или меньший показатель преломления они имеют по сравнению с окружающей средой.

Метод ультрамикроскопии, основан на том же принципе, что и метод темного поля (препараты в ультрамикроскопах освещаются перпендикулярно направлению наблюдения). Этот метод даёт возможность обнаружить (но не «наблюдать» в буквальном смысле слова) чрезвычайно мелкие частицы, размеры которых лежат далеко за пределами разрешающей способности наиболее сильных микроскопов. С помощью иммерсионных ультрамикроскопов удаётся зарегистрировать присутствие в препарате частиц размером до 2´10-9 м. Однако определить форму и точные размеры таких частиц с помощью этого метода невозможно: их изображения представляются наблюдателю в виде дифракционных пятен, размеры которых зависят не от размеров и формы самих частиц, а от апертуры объектива и увеличения микроскопа. Т. к. подобные частицы рассеивают очень мало света, то для их освещения требуются чрезвычайно сильные источники света, например угольная электрическая дуга. Ультрамикроскопы применяются главным образом в коллоидной химии.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow