Проверяется третья предпосылка теоремы Гаусса-Маркова, которая говорит о независимости случайных переменных в уравнениях наблюдений, т.е.ковариация между случайными переменными равна 0: Cov(
)=0 i,j = 1,2,3…,n; i
j
Невыполнение третьей предпосылки теоремы Гаусса – Маркова, или наличие взаимосвязи случайных переменных в модели называется автокорреляцией.
Для тестирования автокорреляции в регрессионных моделях наиболее часто применяется тест Дорбина-Уотсона (DW).
Рассмотрим случай взаимного влияния случайных возмущений в соседних наблюдениях (текущ., предшеств.).
В основе теста лежат следующие предпосылки:
1) случайные возмущения подчиняются нормальному закону распределения
2) случайные возмущения подчиняются следующему правилу


(гомоскедастичный остаток)
Статистика DW, c помощью которой тестируется модель на автокорреляцию, имеет вид:
где t-номер наблюдения, n-количество наблюдений
Найдем область определения статистики DW: (раскроем квадрат разности в числителе)

Таким образом, критическое значение статистика DW зависит не только от значения доверительной вероятности, количества регрессоров в модели и числа наблюдений, но еще и от абсолютных значений регрессоров.
Данное обстоятельство не дает получить единое значение для любой выборки (модели) критическое значение
.
В каждом конкретном случае необходимо искать свое
, что неудобно.
Выяснилось, что можно найти отрезок [
], внутри которого находятся все возможные значения
. Тогда для принятия решения относительно наличия или отсутствия автокорреляции предлагается следующая схема DW:
1) строится отрезок [0;4], на котором отмечаются значения
;

2) Возможны следующие варианты (куда попадает реальное значение DW):
а) если реальное значение DW попало в отрезки от [
] и [
], то автокорреляция существует (что плохо, т.к. случайные переменные влияют друг на друга) и гипотеза об отсутствии автокорреляции отклоняется)
б) если DW попало в отрезок [
,то автокорреляции нет, т.е. гипотеза принимается
в) если реальное значение DW находится в отрезках [
] и [
], то невозможно сказать есть или нет автокорреляция, т.е. значение DW попало в зону неопределенности (единств.способ раскрыть неопределенность воспользоваться другой выборкой, в качестве измененной выборки может служить исходная с измененной последовательностью наблюдений).
Алгоритм теста DW:
Шаг 1. по результатам наблюдений оценить модель линейной регрессии

Шаг 2. для каждого оцененного уравнения, рассчитывается (оценивается) случайные возмущения

Шаг 3. по соответствующим статистическим таблицам находим значении
и
, через k и n (доверит.вероятность 0,95)
Шаг 4. Проверяем в какой интервал на отрезке попал DW.