Применение нашего анализа к рискам экспериментов на ускорителях

Физика элементарных частиц – это исследование элементарных составляющих материи и радиации и взаимодействия между ними. Главный экспериментальный метод в физике элементарных частиц состоит в состоит в использовании таких ускорителей как RHIC и БАК для того, чтобы разогнать пучки частиц до околосветовых скоростей и затем столкнуть их друг с другом. Это позволяет сконцентрировать очень большое количество энергии в одном объёме и разбить частицы на их составляющие, которые затем можно обнаружить. По мере того, как ускорители частиц становились всё больше, достигаемые плотности энергии становились всё большими, что вызвало некоторую озабоченность в отношении их безопасности. Эти опасения о рисках сосредоточились на трёх возможностях: возникновение «подлинного вакуума», превращение Земли в странную материю и разрушение Земли через формирование чёрной дыры.

4.1 Подлинный вакуум и возникновение странной материи

Тот тип вакуума, который существует в нашей вселенной может не быть вакуумом с наименьшим уровнем энергии. В этом случае вакуум может перейти на самый нижний уровень энергии, спонтанно, или после значительного возмущения. Это приведёт к возникновению пузыря «подлинного вакуума» расширяющегося во все стороны со скоростью света, переводя вселенную в иное состояние, явно непригодное для какой-либо жизни (Turner and Wilczek 1982). Наша обычная материя состоит из электронов и двух типов кварков: верхних кварков и нижних кварков. Странная материя содержит третий тип кварков: странные кварки. Было выдвинуто предположение, что странная материя может быть более устойчивой, чем нормальная материя, и может быть способна превращать атомные ядра в ещё большие количества странной материи (Witten 1984). Было также выдвинуто предположение, что ускорители частиц могут создавать маленькие сгустки отрицательно заряженной странной материи, известные как стрейнджлеты. Если обе эти гипотезы верны, и стрейнджлет имеют достаточно высокие шансы взаимодействовать с нормальной материей, то он может расти внутри Земли, притягивая ядра со всё большей скоростью, до тех пор, пока вся планета не превратится в странную материю и вся жизнь на ней будет уничтожена. К сожалению, странная материя сложна и малопонятна, и относительно неё имеются модели с крайне различными предсказаниями относительно ее стабильности, заряда и других свойств (Jaffe, Busza et al. 2000).Одним из способов ограничить риск от этих источников является аргумент о космических лучах: столкновения того же типа с высокоэнергетичными частицами случаются повсеместно в атмосфере Земли, на поверхности Луны и везде во Вселенной. Тот факт, что Луна или наблюдаемые звёзды не были разрушены в результате значительного числа прошлых столкновений (многие из которых имели гораздо большую энергию, чем та, что может быть достигнута в человеческих экспериментах) предполагает, что угроза незначительна. Этот аргумент был использован впервые против возможности распада вакуума (Hut and Rees 1983), но является вполне распространённым. Влиятельный анализ рисков, связанных со странной материей, был выполнен (Dar, De Rujula et al. 1999) и был основой отчёта о безопасности RHIC. Этот отчёт учитывает тот факт, что любые опасные остатки космических лучей, столкнувшихся с веществом, будут двигаться с высокими относительными скоростями (и в силу этого взаимодействовать с гораздо меньшей вероятностью), в то время как лобовые столкновения на ускорителях могут создавать осколки, двигающиеся с гораздо меньшими скоростями. Они использовали частоту лобовых столкновений космических лучей, чтобы оценить продукцию стрейнджлетов. Такие стрейнджлеты затем будут замедляться галактическими магнитными полями и в конце концов будут поглощаться в ходе формирования звёзд. Вместе с оценками частоты взрывов сверхновых, это может быть использовано для оценки вероятности создания опасных стрейнджлетов в ускорителях частиц. В результате была получена оценка < 2*10-9 в год для RHIC.[151] В то время, как использование эмпирических границ и экспериментально проверенной физики уменьшает вероятность ошибки в теории, в данной статье используется примерно 30 шагов, чтобы придти к окончательному выводу. Например, если есть шанс в 1 к 10 000 вычислительной или модельной ошибки в каждом шаге, то это дало бы суммарную P(-A)=0.3%. Это полностью бы затенило оценку риска. Тонкое усложнение аргумента о космических лучах было отмечено в статье (Tegmark and Bostrom 2005). Выживание Земли не является достаточным основанием для доказательства безопасности, поскольку мы не знаем, живём ли мы во вселенной с «безопасными» законами природы или мы живём во вселенной, в которой взрывы планет или распад вакуума случаются, но мы просто были удивительно везучими до сих пор. Хотя последняя возможность выглядит очень маловероятной, все наблюдатели в такой вселенной будут обнаруживать себя в тех редких случаях, когда их планеты и звёзды выжили, и будут обладать той же информацией, что и мы. Тегмарк и Бостром таким образом пришли к выводу, что игнорирование антропного фактора делает предыдущие модели слишком узкими. Они учли это антропное искажение и пришли к выводу, основываясь на анализе (Jaffe, Busza et al. 2000), что риск от ускорителей составляет менее 10-12 в год. Это пример продемонстрированной ошибки в важном физическом доказательстве безопасности (которое было ключевым в оценке безопасности RHIC). Более того, важно отметить, что RHIC проработал пять лет на основании ошибочного отчёта о безопасности, до того, как Бостром и Тегмарк обнаружили и исправили неточность доказательства. Хотя эта неточность была немедленно исправлена, мы должны отметить, что исправление зависит от двух вещей: рассуждений на основании антропного принципа и от сложной модели формирования планет (Lineweaver, Fenner et al. 2004). Если хотя бы одна из них содержит ошибки, или сам базовый брукхавенский анализ ложен, то и вся оценка риска искажена.

4.2 Формирование чёрной дыры

Эксперименты на БАК в ЦЕРН были предназначены для исследований верности и границ Стандартной модели физики частиц путём столкновения пучков высокоэнергетичных протонов. Это будет наиболее высокоэнергетичный эксперимент из когда-либо сделанных, что сделало его предметов озабоченности в последнее время. В силу высокой убедительности предыдущих доказательств безопасности в отношении формирования стрейнжлетов и распада вакуума, основным предметом беспокойства в отношении БАК стало возникновение чёрных дыр. Ни одна из теоретических статей, которые мы обнаружили, судя по всему не рассматривает чёрные дыры как угрозу безопасности, в основном потому что все они предполагают, что чёрные дыры испарятся благодаря Хокинговскому излучению. Однако в статье (Dimopoulos and Landsberg 2001) было предположено, что если чёрные дыры будут возникать, что ускорители частиц могут быть использованы для проверки теории о Хокинговском излучении. После этого критики также начали спрашивать, можем ли мы не задумываясь принять то, что чёрные дыры будут безвредно испаряться. Новый анализ продукции чёрных дыр на БАК (Giddings and Mangano 2008) является хорошим примером того, как риски могут быть более эффективно ограничены посредством множества субаргументов. Не пытаясь дать вероятность катастрофы (а вместо этого заключая, что «нет рисков значительных событий от таких чёрных дыр») эта статья использует доказательство, основанное на проведении множества верхних границ. В начале она показывает, что быстрый распад чёрных дыр является непременным следствием нескольких различных физических теорий (А1). Во-вторых, в статье обсуждается несовместимость между неиспаряющимися чёрными дырами и механизмами электрической нейтрализации чёрных дыр: для того, чтобы создаваемые космическими лучами чёрные дыры были бы безопасными, но чёрные дыры из ускорителей были бы опасными, они должны быть способны быстро сбрасывать избыточный электрический заряд (A2). Наше нынешнее понимание физики говорит нам о том, что чёрные дыры должны распадаться, и даже если они не распадаются, они будут неспособны разряжаться сами по себе. Только если это понимание содержит ошибки, то тогда в игру вступает следующий раздел. Третья часть, которая занимает большую часть статьи, моделирует то, как обычные и многомерные чёрные дыры могли бы взаимодействовать с обычной материей. Там делается вывод о том, что если масштаб многомерной гравитации меньше, чем 20 нм, то время, за которое чёрная дыра поглотит Землю, будет больше, чем время естественного существования планеты. Для тех сценариев, в которых быстрое поглощение Земли возможно, время поглощения белых карликов и нейтронных звёзд так же будет очень коротким, а захват чёрных дыр от сталкивающихся космических лучей будет таким высоким, что время жизни звёзд было бы гораздо короче наблюдаемого (а также это противоречило бы скорости охлаждения белых карликов) (А3). Хотя каждый из этих аргументов имеет свои слабости, сила полного доказательства (A1,A2,A3) значительно больше за счёт их комбинации. По существу статья представляет собой три последовательных доказательства, каждое из которых частично заполняет серую область (см рис. 1), оставшуюся от предыдущих. Если теории о распаде чёрных дыр терпит провал, то в действие вступает аргумент об электрическом разряде, и если, вопреки всем ожиданиям, чёрные дыры оказываются стабильными и нейтральными, то третий аргумент показывает, что данные астрофизики ограничивают скорость аккреции вещества ими очень малой величиной.

4.3. Применение вышеприведённого анализа в отношении безопасности БАК

Каковы следствия нашего анализа в для оценки безопасности БАК? Во-первых, рассмотрим уровень ставок в данном вопросе. Если одна из предполагающихся катастроф должна случится, это будет означать разрушение Земли. Это будет означать полное разрушение окружающей среды, 6.5 млрд. человеческих смертей и гибель всех будущих поколений. Стоит отметить, что потеря всех будущих поколений (а вмести с ними и всего потенциала человечества) может быть величайшей потерей из этих трёх, но подробный анализ этих ставок находится за рамками этой статьи. Для наших целей важно отметить, что разрушение Земли по крайней мере так же плохо как 6.5 млрд человеческих смертей. Есть некоторая неопределённость в том, как надо комбинировать вероятности и ставки в суммарной оценке рисков. Некоторые утверждают, что простой подход, состоящий в вычислении ожидаемой полезности, является наилучшим, тогда как другие утверждают подход, основанные на некоторой форме полного неприятия риска. Однако мы можем обойти этот диспут, отметив, что в любом случае риск ущерба по крайней мере столь же плох, как математическое ожидание ущерба. Таким образом, риск с вероятностью p гибели 6.5 млрд людей по крайней мере настолько же плох, как неизбежная гибель 6.5*109 *р людей.

Теперь мы постараемся дать наиболее точную оценку вероятности одного из перечисленных выше сценариев катастрофы, которые могут произойти во время работы БАК. Хотя доказательства безопасности БАК заслуживают похвалы за свою продуманность, они не являются непогрешимыми. Хотя отчёт рассматривает несколько физических теорий, вполне возможно, что все они являются неадекватными репрезентациями физической реальности. Также возможно, что модели процессов в БАК или астрономических процессов, используемые в аргументе о космических лучах, содержат некие важные ошибки. Наконец, возможно, что в отчёте есть ошибки в вычислениях. Вспоминая уравнение (1):

(1) P(X)=P(X | A)P(A)+P(X |- A)P(- A)

P(X) определяется двумя слагаемыми. Второе из них определяется дополнительной вероятность катастрофы, связанной с тем, что доказательство неверно. Оно является произведением вероятности ошибки в доказательстве на вероятность катастрофы при условии такой ошибки. Оба сомножителя очень трудно оценить, но мы можем достичь определённого понимания, если укажем границы, в которых они должны лежать, для того, чтобы риск БАК был приемлемым.

Из (1) следует:

(4) P(X) ≥ P(X |- A) P(- A).

Если мы под I обозначим приемлемый уровень ожидаемого числа смертей в результате операций БАК, мы получим 6.5*109 *P(X) ≤ I. Объёдинив это с уравнением (4), мы получим:

(5) P(X |- A)P(- A) ≤1.5*10-10 *I.

Это неравенство накладывает жёсткие ограничения на приемлемые величины вероятностей. Это гораздо легче понять на примере, и поэтому мы дадим некоторые числа для иллюстрации. Предположим, что предел был установлен в 1000 ожидаемых смертей, и тогда P(X |- A)*P(- A) должно быть меньше, чем 1,5*10-7 для того, чтобы уровень риска был приемлемым. Это требует очень низких значений этих вероятностей. Мы видели, что для многих доказательств P(- A) больше, чем 0,001. Мы также указали, что доказательство безопасности RHIC имело серьёзную ошибку, которая не была обнаружена экспертами в то время. Таким образом, было бы очень смелым утверждать, что доказательство безопасности БАК имеет вероятность ошибки, значительно меньшую, чем 0,001, однако для чистоты аргумента мы примем, что она равна всего лишь 0,0001, что означает, что из выборки в 10 000 независимых доказательств подобного уровня, только одно имело бы серьёзную ошибку. Даже если величина P(- A) составляет всего лишь 10-4 P(X |- A) должно быть 0.15%, чтобы риск был приемлемым. P(X |- A) – это вероятность катастрофы при условии, что доказательство безопасности ошибочно, и оно является наиболее сложным для оценки компонентом уравнения (1). Мало кто будет возражать, что у нас есть очень мало данных для того, чтобы приписать какое-либо значение P(X |- A). Таким образом, было бы слишком смелым оценить его в менее чем 0.15% без каких-либо существенных доказательств. Возможно, что такой аргумент может быть найден, но пока его нет, такое малое значение P(X |- A) ничем не обосновано. Мы подчёркиваем, что приведённая выше комбинация чисел была дана чисто для иллюстрации, однако мы не смогли найти какую-либо убедительную комбинацию из этих трёх чисел, которые соответствуют ограничению и которые не требуют значительных доказательств либо для уровней уверенности, либо уровней пренебрежения числом ожидаемых смертей. Мы хотим также подчеркнуть, что мы открыты к возможности, что дополнительные поддерживающие аргументы и независимые проверки моделей и вычислений могут значительно уменьшить шансы обнаружить ошибку в доказательстве. Однако из нашего анализа следует, что нынешний отчёт по безопасности не должен быть последним словом в оценках безопасности БАК. Чтобы пользоваться доказательствами из последнего отчёта по безопасности БАК, мы должны провести дополнительную работу по оценке P(- A), P(X |- A), приемлемого уровня смертей, и ценности будущих поколений и другой жизни на Земле. Такая работа потребует знаний за пределами теоретической физики и потребуется создание междисциплинарной группы. Если бы ставки были бы малы, то тогда имело бы смысл отмести этот дополнительный уровень анализа рисков, но ставки астрономически высоки, и в силу этого дополнительный анализ является критически важным. Даже если БАК продолжит свою работу без дополнительного анализа, что весьма вероятно, эти уроки должны быть применены к оценке рисков с высокими ставками и низкой вероятностью.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: