Культурологические и климатологические аспекты

Трудно избежать рассуждений на тему о возможных причинах, заставляющих или побуждающих технологические цивилизации предпринимать потенциально опасные геоинженерные проекты. Эти причины принадлежат к царству социологии науки и культурологи, и в силу этого вынуждены быть умозрительными экскурсиями о человеческом сознании или человекоподобном инопланетном сознании. Рассуждения этой главы, следовательно, должны восприниматься с осторожностью. Революционное воздействие астрономических наблюдений на историю науки и технологии на земле давно было отмечено и исследовано в разных контекстах. Наиболее исследованным случаем является, несомненно, революция Коперника (39), которая непосредственно ведёт к современной науке и технологии, но была также масса других. Не напрасно было сказано: «…именно Луна породила принципиальные идеи, равно как и позволила провести ключевые испытания нашего понимания Вселенной» (40). На более широкой культурной основе можно убедительно доказать, что характерной чертой человеческой цивилизации (-ий) является «устремлённость вверх». В большинстве человеческих культур всех эпох божества обитают на горных вершинах, на небе, на специфических небесных объектах или в абстрактном «небесном» царстве. Большинство святых мест человечества либо топографически приподняты, чтобы быть ближе к небу (Лхаса, гора Олимп, Синай, гора Афон, Теотиуакан) или ассоциированы с направленными вверх движениями/восхождениями (мечеть Скалы в Иерусалиме, Европейские соборы, Буддистские пагоды, исламские минареты). Зарождающаяся наука Астро-археология отслеживает следы влияния небесных тел на человеческую жизнь и культуру в течение, по крайней мере, 6 000 лет. Необходимым предусловием этого является то, что атмосфера Земли значительно прозрачна в тропических и континентальных средних широтах (или, по крайней мере, она была до наступления индустриальной эры с загрязнением атмосферы аэрозолями и ночным светом). Научное расследование ООН, «Проект азиатское коричневое облако», занимается исследованиями распространяющегося сажевого савана над Индией и Китаем. Что, если бы люди, обладающие превосходным зрением, никогда бы не могли видеть Луну и ~6 000 звезд вселенной, видимых с Земли? Предположим, что небо Земли представляет собой толстый слой облаков, сквозь который может проникать только рассеянный свет, как это сделал выдающийся математик Брайн Дэвис (41) в своём умозрительном историческом эссе «Роль астрономии в истории науки» (42) Стефан Уэбб предложил «Решение 29: Облачное небо является обычным» в книге, цитированной по ссылке 1 в качестве решения проблемы того, почему некоторые или большинство внеземных цивилизаций не имеют связи с нами. Мы считаем утверждаемую им идею о том, что плотные облака полностью предотвращают возникновение науки и технологий, довольно экстремальной и недоказанной. Проф. Дэвис, с другой стороны, защищает противоположный сценарий: а именно, что наука и технологии будут развиваться, хотя медленнее и неким образом по-другому, даже в отсутствии астрономических наблюдений и того вызова, которые они бросали людям в течение тысячелетий. Однако возможная зацепка лежит в самой природе этой разницы. Цивилизации, возникшие на планетах с плотным облачным покровом (аналогичным тому, что окружает Венеру или Титан) будут, вероятно, более «вниз-ориентированы». Они будут развивать науки о земле вместо астрономии и связанных с ней наук. Финансовые и материальные ресурсы такой цивилизации будут брошены на путешествия вниз, а не верх. Возможно, эквиваленты НАСА, ЕСА и других космических агентств возникнут в этом случае с целью исследования внутренностей планеты, а не космических окрестностей. Это будет иметь глубокое воздействие на возможность и вероятность того, что будут развивать потенциально опасные геоинженерные проекты. В дополнение, отсутствие ясного примера парникового эффекта (в этом состоит историческая роль, которую сыграла Венера для нашей цивилизации), вероятно, уменьшит осознание таких угроз как в научных, так и в общественных кругах. (Но я не хочу сказать, что влияние из глубин не было важным на протяжении человеческой истории. Стоит отметить, что череда греческих дев, которые входили в пророческий транс под влиянием различных газов, исходивших из-под земли в храме дельфийского оракула, определила ход греческой истории! (43) В наши дни наблюдается возрастающий общественный интерес к жизни под землёй. (44) С другой стороны, это непрямым образом подтверждает идею Дэвиса о том, что продвинутые культуры, обладающие наукой, могут, в принципе, формироваться под влияниями, «нацеленными вниз».(45) Мы предполагаем, что типичная планетарная человеческая цивилизация на планете, аналогичной земле, будет энергично стремиться проникнуть под поверхность Земли, поскольку это – единственная физическая царство, доступное для лёгких исследований; более того, мы предположили, что эта общность разумных существ с энтузиазмом примет и будет практиковать Макроинженерию (46). В конечном счёте, внедрение технологии аэроскосимческих самолётов позволит людям принять то, что «Небеса рассказывают о славе Бога» (Пс, 19:1), поскольку они смогут двигаться тогда в по сути бесконечном пространстве, простирающемся от земной поверхности через атмосферу к удалённейшим частям наблюдаемой Вселенной, особенно включая достижимые части Солнечной системы. (47) Но поскольку даже современные люди не имеют таких летающих аэрокосмических аппаратов, то кажется разумным игнорировать последствия их существования или несуществования. Есть ставшая клише классическая фраза, часто появляющаяся в эпической античной поэзии, которая называет безграничный океан «туманным» или «воздушным», имея в виду, очевидно, покров тумана, который является облаком, касающимся поверхности земли. Некоторые макроинженеры воспринимают это высокохудожественное греческое выражение как комментарий к земному гидрологическому циклу, циркулированию водяного пара, в частности, в земной атмосфере. Но, с точки зрения наших целей, древние имели в виду облака как выраженные физические границы известного мира (по-гречески – ойкумены). Наш отчёт имеет дело с горизонтальным облаком, окружающим всю планету, тогда как наши предшественники 2 тысячи лет назад должны вертикальное облако по периферии (Бассейн Средиземного моря) – или, по крайней мере, эффективно ограничивающее – их морские исследования восточной части Атлантического океана! (48) Естественный облачный покров нашей Земли составляет от ~65% до 68%, плюс минус 4.8%. Галактические космические частицы – особенно солнечные космические частицы, вылетающие из солнечной атмосферы, – сталкиваются с другими частицами и способствуют формированию некоторых облаков! (49) Другими словами, Солнце регулирует земное небо! (49) Важное дополнительное модулирование может придти, как было недавно заявлено, от галактических источников космических лучей, сконцентрированных в спиральных рукавах Млечного пути и центральных областей (балдж) (50). Следовательно, возможно, что существуют целые огромные регионы Галактики (субрегионы обитаемой зоны Галактики), в которых преобладают преимущественно закрытые облачностью землеподобные планеты, и большинство возникающих цивилизаций являются «оринетированными-вниз». Как этот сценарий может быть эмпирически проверен? Равно как и в отношении всех «местных» объяснений парадокса Ферми это довольно трудная задача, но есть несколько ключей к её решению. Обнаружение землеподобных планет у других звёзд остаётся, вероятно, наиболее важной наблюдательной задачей в астрономии в следующее десятилетие; несколько амбициозных проектов, включая космические обсерватории Дарвин (51) и Гайя (52), разработаны специально для этой целей. Поскольку астрономы уже исследовали атмосферу гигантской юпитероподобной экзопланеты, не кажется неразумным ожидать, что они откроют людям кое-что о геофизических свойствах землеподобных экзопланет. Это позволит нам исследовать то, насколько обычны облачные планеты в галактике. С другой стороны, мы определённо не должны эмпирически проверять безопасность МТЕС зонда Стевенсона и других подобных хитроумных изобретений; однако неинвазивные геофизические исследования определённо прольют больше света на проблемы высвобождения углерода и эффекты от возмущений в тонких обратных связях мантии, коры и атмосферы. (53) Наконец, следует надеяться, что будущие исследования в социологии науки и технологии откроют людям то, насколько типично наше относительно слабое понимание гео-науки в сравнении с рядом моделей других культур. Таким образом, гео-катастрофический сценарий более доступен для эмпирической верификации, чем большинство подобных сценариев разрешения парадокса Ферми.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: