Химический состав отложений

Состав примесей водного теплоносителя зависит от системы подготовки воды, обработки конденсата, присосов в конденсаторе, типа и параметров парового котла, воднохимического режима и других факторов. Большое разнообразие примесей и условий их существования в пароводяном тракте котла приводит, естественно, к различным по химическому составу и своим характеристикам отложениям. Можно выделить по составу следующие основные группы отложений.

1)Железооксидные отложения.

При 100-ой конденсатоотчистке и подготовке питательной воды по схеме глубокого обессоливания около половины примесей питательной воды котлов СКД составляют продукты коррозии железа. В составе отложений оксидов железа более 90-95%. При докритическом давлении в барабанных и прямоточных котлах по мере увеличения давления и улучшения системы подготовки воды доля железооксидных отложений также растет.

Оксиды железа, поступающие в котловую воду, превращаются в ней в магнетит Fe3O4, который и является основной железооксидных отложений. Другие формы оксидов (Fe2O3) образуют, в основном, шламовые осадки.

С ростом температуры растворимость магнетита уменьшается, значительная часть оксидов железа находится в дисперсном, а не истинно-растворенном состоянии. Поэтому отложения образуются не только за счет кристаллизации, но и за счет электрокинетических процессов. Дисперсные частицы несут электрический заряд (адсорбция ионов из теплоносителя, диссоциация собственных молекул). Под воздействием электрофоретических сил они осаждаются на поверхности нагрева и образуют отложения.

Скорость образования отложений А, мг/(см2ч), зависит линейно от концентрации С Fe, мг/кг, и от теплового потока q, Вт/м2, во второй степени:

(1.44)

2)Щелочноземельные отложения.

Щелочноземельные отложения состоят из соединений кальция и магния. Эти соединения попадают в питательную воду с присосами в конденсаторе и с добавочной водой. В котловой воде обычно присутствуют: CaSiO3, CaSO4, CaCO3, CaCl2 и другие соединения. Интенсивное отложение соединений кальция (аналогично и магния) происходит при превышении концентрации Ca2+ и анионов произведения растворимости.

Скорость образования отложений Ca и Mg от их концентрации нелинейная, но для оценки можно использовать формулу

(1.45)

3)Отложение соединений меди.

Оксиды меди в питательной воде появляются в результате коррозии латунных труб конденсатора, ПНД или деталей насоса, содержащих медь. Уже при концентрации меди порядка 3 мкг/кг происходит интенсивное отложение меди на участках с высокими тепловыми потоками или в местах глубокого упаривания воды. В отложениях присутствует, главным образом, чистая медь. Восстановление ионов меди до чистой меди происходит при их контакте с чистым железом. Процесс этот электрохимический, для его осуществления необходима достаточно высокая разность потенциалов. Поэтому медные отложения образуются в заметных количествах в зоне тепловых потоков выше порового значения кВт/м2.

Скорость образования отложений меди описывается формулами типа

(1.46)

Величина n = 5,4-6,2. Скорость A Cu мало зависит от концентрации соединений меди в воде.

4) Алюминиевые отложения (алюмосиликатные, силикатные с преобладанием свободной SiO2). Реальные концентрации кремниевой кислоты в питательной воде изменяются от 10 мкг/кг SiO2 при непрерывной длительной эксплуатации до 100 мкг/кг при пуске. Эти величины находятся ниже растворимости, однако кремнекислота всегда присутствует в отложениях при высоких давлениях. Возможно, кремниевая кислота способна вступать в различные реакции, например, с оксидами железа с образованием ферросиликатов.

5) Отложение легкорастворимых соединений.

В питательной воде NaOH, NaCl, Na2SO4, NaSiO3. Эти соединения обладают большой растворимостью при высоких параметрах, но за счет адсорбции на поверхностях нагрева, за счет химического взаимодействия с отложениями, соединения натрия присутствуют в составе отложившихся веществ.

Интенсивное отложение соединений натрия происходит при глубоком упаривании воды, сопровождающемся концентрированием примеси, в пристенном слое (при высоком тепловом потоке, малой скорости потока и т.п.) или в потоке теплоносителя в испарительных поверхностях. В этом случае концентрация веществ превышает растворимость, и они кристаллизируются на поверхности трубы или в потоке теплоносителя.



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: