Промышленные роботы

Промышленная робототехника является, пожалуй, самым перспективным направлением развития. Только за 10 лет с 1969 по 1979 годы количество комплексно механизированных и автоматизированных цехов и производств выросло с 22,4 до 83,5 тысяч, а механизированных предприятий – с 1,9 до 6,1 тысяч [12]. Всего же в Советском Союзе было выпущено более 100 тысяч единиц промышленных роботов, которые заменили более миллиона рабочих [15].

Советские инженеры планировали внедрить использование роботов практически во все сферы промышленности: машиностроение, сельское хозяйство, строительство, металлургия, горнодобывающая, лёгкая и пищевая промышленность и другие. Так, в одном из московских ателье появился робот-закройщик. Он был запрограммирован на выполнение различных операций – от измерения всех необходимых размеров фигуры заказчика до раскроя ткани. Учитывая модель костюма, варианты использования ткани и другие параметры, робот выдаёт на выкройку на листе бумаги [20].

В США разработка промышленных роботов выделилась в отдельную отрасль в 1970-х годах. Появление микропроцессоров создало основу современных систем управления роботами. В 1973 году во всём мире использовались 3 тысячи промышленных роботов, из которых 30% принадлежали американской компании Unimation. В среднем, начиная со второй половины 1970-х годов ежегодный прирост продаж промышленных роботов составлял 30% [27]. Наибольшее распространение роботы получили в автомобильной промышленности, их использовали для сварки, покраски, сборки деталей и т. д.

Первым в мире конвейерную сборку механизмов ввел Петродворцовый часовой завод в 1965 году. До этого во всём мире механические часы от начала и до конца собирались вручную. Петродворцовый часовой завод первым же и отказался от конвейерной линии, заменив её промышленными роботами. Сборка часов проходила не по конвейерной, а по «постовой» схеме, которая обеспечивала большую производительность при меньшем проценте брака. За рационализацию производства Петродворцовый часовой завод был награждён Государственной премией (бывшая Сталинская премия). Автоматизация производства на этом предприятии высвободила на сборке часов 300 человек и увеличила производительность труда в 6 раз [12]. В 1980-е годы на заводе ежегодно производилось 4,5 экземпляров часов, а часы «Ракета» считались самыми лучшими в СССР. Роботы, разработанные на этом заводе, также использовались для сборки взрывателей и другой важной государственной деятельность [14].

Структура промышленного робота состоит из нескольких систем: исполнительной (двигательной), информационно-измерительной (сенсорной), управляющей (интеллектной) и системы связи (языка). Исполнительная система определяет способность робота совершать различные движения. В качестве исполнительных систем применяются механические манипуляторы, устройства передвижения, электромагнитные и пневматические манипулирующие устройства. Сенсорная система служит для восприятия и преобразования информации о состоянии внешней среды, результатах воздействия на неё исполнительной системы и о состоянии самого робота. Элементами сенсорной системы являются телевизионные и оптико-электронные устройства, лазерные и ультразвуковые дальномеры, контактные, индуктивные и тактильные датчики, разнообразные датчики положения и скорости и др.

Управляющая, или интеллектная, система выполняет следующие функции: на основе сигналов обратной связи от сенсорной системы она вырабатывает закон управления исполнительной системой; организует общение робота с человеком-оператором на заданном языке; планирует действия робота и принимает целенаправленные решения. Возможности робота главным образом зависят от программного и алгоритмического обеспечения его управляющей системы. Управляющие системы роботов создаются на базе ЭВМ или микропроцессоров. Система связи робота служит для обмена информацией между роботом, человеком-операторов, другими роботами и устройствами (в том числе технологическим оборудованием) с целью передачи заданий роботу, контроля за функционированием робота, диагностики неисправностей и т. п. Информация от человека поступает, как правило, через устройство ввода или пульт управления [17].

Одно из важнейших свойств промышленного робота – это перепрограммируемость. В роботах с цикловым программным управлением программируется последовательность выполнения движений от точки к точке. Цикловые роботы применяются для загрузочно-разгрузочных операций, транспортно-складских работ, а также в кузнечно-прессовом производстве, как промышленный робот «Циклон». Часто используются на сборочных операциях.

Позиционные промышленные роботы обладают более совершенной системой управления, но вместе с цикловыми роботами они уступают высокоэффективным промышленным роботам с контурным программным управлением на базе микропроцессоров. Последние применяются для автоматизации тяжёлых производственных процессов, таких как сварка, окраска, сборка и раскрой материалов. Пример такого механизма – робот «Бета» производственного объединения «ВАЗ» [18].

Предприятие «АвтоВАЗ» являлось передовым в Советском Союзе по внедрению роботов в автомобильную промышленность. Первые 10 штук роботов «Джулия» появились в 1978 году при запуске в производство автомобиля «Нива». Они имели гидравлический привод и использовались для сварки боковин и в прессовом производстве. В 1986 году при запуске в производство ВАЗ-2108, -2109, -21099 смонтировали 30 роботов «Бета» для точечной сварки [22]. После распада СССР завод по-прежнему использует роботы.
Космические роботы


В период Холодной войны среди крупнейших мировых держав развернулось соревнование в сфере космических технологий. Первый полёт в космос, первый выход человека в открытый космос, запуск искусственного спутника, высадка на Луну… Перед учёными стояли сложнейшие технологические задачи, которые они с блеском решали. Освоение космоса дало огромный толчок к созданию автоматических систем управления, а преимущества робота перед человеком для работы в космической среде были очевидны. На робота не влияют внешние неблагоприятные условия, такие как космическая радиация. Роботу не требуются дополнительные ресурсы, как правило, он работает на солнечных батареях. Робот идеально подходит для выполнения такой механической работы, как сбор грунта с поверхности, сканирование и отправка данных на Землю.

Первым в мире дистанционно-управляемым самоходным аппаратом стал Луноход-1, доставленный на поверхность Луны 17 ноября 1970 года советской межпланетной станцией «Луна-7». Этот аппарат весом 756 кг обладал двумя телекамерами, рентгеновским флуоресцентным спектрометром и рентгеновским телескопом, детектором радиации, лазерным рефлектором и антенной передачи информации на Землю. Каждое из восьми колёс имело свой тормоз и электродвигатель, благодаря чему луноход мог объезжать небольшие препятствия. Электричество вырабатывала солнечная батарея на крыше робота. Луноход-1 успел проехать более 10 км, передал на Землю 211 панорам и около 25 тысяч фотографий, после чего связь с Землёй оборвалась из-за выработки изотопного источника теплоты.

Вслед за Луноходом-1 был создан Луноход-2. Его основными задачами являлись фото- и видеосъёмка поверхности Луны, проведение экспериментов с наземным лазерным дальномером и другие операции. Его доставили на Луну 15 января 1973 года. От первого аппарата Луноход-2 отличался наличием третьей телекамеры, что позволило увеличить дальность видимости. Он проработал почти 5 месяцев, прошёл за это время 37 км и передал на Землю 86 панорам и около 80 тысяч кадров. Луноход-2 вышел из строя из-за перегрева аппаратуры [21].


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: