double arrow

Полигон и гистограмма

Для наглядности строят различные графики статистического распределения, в частности, полигон и гистограмму.

Определение. Полигоном частот называют ломаную, отрезки которой соединяют точки (x1, n1), (x2, n2), (xk, nk).

Для построения полигона частот на оси абсцисс откладывают варианты xi, а на оси ординат – соответствующие им частоты ni. Точки (xi, ni) соединяют отрезками прямых и получают полигон частот.

Определение. Полигоном относительных частот называют ломаную, отрезки которой соединяют точки (x1, w1), (x2, w2), (xk, wk).

Для построения полигона частот на оси абсцисс откладывают варианты xi, а на оси ординат wi. Точки (xi, wi) соединяют отрезками прямых и получают полигон относительных частот.

На рисунке изображен полигон относительных частот следующего распределения:

x 1,5 3,5 5,5 7,5
w 0,1 0,2 0,4 0,3

Рис. 6. Полигон относительных частот.

В случае непрерывного признака целесообразно строить гистограмму, для чего интервал, в котором заключены все наблюдаемые значения признака, разбивают на несколько частичных интервалов длинной h и находят для каждого частичного интервала ni – сумму частот вариант, попавших в i-ый интервал.

Определение. Гистограммой частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длиною h, а высоты равны отношению (плотность частоты).

Рис. 7. Гистограмма частот.

Для построения гистограммы частот на оси абсцисс откладывают частичные интервалы, а над ними проводят отрезки, параллельные оси абсцисс, на расстоянии .

Площадь i-го частичного прямоугольника равна = - сумме частот вариант i-го интервала; следовательно, площадь гистограммы частот равна сумме всех частот, то есть объему выборки n.

На рисунке 2 изображена гистограмма частот распределения объема n =100, приведенного в таблице 1.

Частичный интервал, длиною h=5 Сумма частот вариант частичного интервала Плотность частоты
5 – 10   0,8
10 – 15   1,2
15 – 20   3,2
20 – 25   7,2
25 – 30   4,8
30 – 35   2,0
34 – 40   0,8

Определение. Гистограммой относительных частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длинною h, а высоты равны отношению (плотность относительной частоты).

Для построения гистограммы относительных частот на оси абсцисс откладывают частичные интервалы, а над ними проводят отрезки, параллельные оси абсцисс на расстоянии . Площадь i-го частичного прямоугольника равна = - относительной частоте вариант, попавших в i-й интервал. Следовательно, площадь гистограммы относительных частот равна сумме всех относительных частот, то есть единице.

Примеры.

1. В результате выборки получена следующая таблица распределения частот.

     
     

Построить полигоны частот и относительных частот распределения.

Для начала построим полигон частот.

Рис. 8. Полигон частот.

Чтобы построить полигон относительных частот найдем относительные частоты, для чего разделим частоты на объем выборки n.

n = 3 + 10 + 7 = 20.

.

Получаем

     
0,15 0,50 0,35

Построим полигон относительных частот.

Рис. 9. Полигон относительных частот.

2. Построить гистограммы частот и относительных частот распределения.

Найдем плотность частоты :

Частичный интервал, длиною h = 3 Сумма частот вариант частичного интервала Плотность частоты
2 – 5    
5 – 8   3,3
8 – 11   8,3
11 – 14    

Построим гистограмму частот.

Рис. 10. Гистограмма частот.

Чтобы построить гистограмму относительных частот, нужно найти относительные частоты. Для этого найдем объем выборки n.

.

Теперь найдем относительные частоты :

Получим:

Частичный интервал Сумма относительных частот Плотность частоты
2 – 5 0,18 0,06
5 – 8 0,2 0,07
8 – 11 0,5 0,16
11 – 14 0,12 0,04

Плотности частот нужно вычислить. При этом h = 3.

Построим гистограмму относительных частот.

Рис.11. Гистограмма относительных частот.


Сейчас читают про: