Сетевой уровень

Сетевой уровень (network layer) служит для образования единой транспортной системы, объединяющей несколько сетей, называемой составной сетью, или ин­тернетом[12].

Технология, позволяющая соединять в единую сеть множество сетей, в общем случае по­строенных на основе разных технологий, называется технологией межсетевого взаимо- действия (internetworking).

На рис. 4.8 показаны несколько сетей, каждая из которых использует собствен­ную технологию канального уровня: Ethernet, FDDI, Token Ring, ATM, Frame Relay. На базе этих технологий каждая из указанных сетей может связывать ме­жду собой любых пользователей, но только своей сети, и не способна обеспечить передачу данных в другую сеть. Причина такого положения вещей очевидна и кроется в существенных отличиях одной технологии от другой. Даже наиболее близкие технологии LAN — Ethernet, FDDI, Token Ring, — имеющие одну и ту же систему адресации (адреса подуровня MAC, называемые МАС-адресами), отли­чаются друг от друга форматом используемых кадров и логикой работы протоколов. Еще больше отличий между технологиями LAN и WAN. Во многих технологиях WAN задействована техника предварительно устанавливаемых виртуальных ка­налов, идентификаторы которых применяются в качестве адресов. Все техноло­гии имеют собственные форматы кадров (в технологии ATM кадр даже называ­ется иначе — ячейкой) и, конечно, собственные стеки протоколов.


Чтобы связать между собой сети, построенные на основе столь отличающихся технологий, нужны дополнительные средства, и такие средства предоставляет сетевой уровень.

Функции сетевого уровня реализуются:

□ группой протоколов;

□ специальными устройствами — маршрутизаторами.

Одной из функций маршрутизатора является физическое соединение сетей. Мар­шрутизатор имеет несколько сетевых интерфейсов, подобных интерфейсам ком­пьютера, к каждому из которых может быть подключена одна сеть. Таким образом, все интерфейсы маршрутизатора можно считать узлами разных сетей. Маршру­тизатор может быть реализован программно, на базе универсального компьютера (например, типовая конфигурация Unix или Windows включает программный модуль маршрутизатора). Однако чаще маршрутизаторы реализуются на базе спе­циализированных аппаратных платформ. В состав программного обеспечения маршрутизатора входят протокольные модули сетевого уровня.

Итак, чтобы связать сети, показанные на рис. 4.8, необходимо соединить все эти сети маршрутизаторами и установить протокольные модули сетевого уровня на все конечные узлы пользователей, которые хотели бы связываться через состав­ную сеть (рис. 4.9).


Данные, которые необходимо передать через составную сеть, поступают на сете­вой уровень от вышележащего транспортного уровня. Эти данные снабжаются заголовком сетевого уровня. Данные вместе с заголовком образуют пакет — так называется PDU сетевого уровня. Заголовок пакета сетевого уровня имеет уни­фицированный формат, не зависящий от форматов кадров канального уровня тех сетей, которые могут входить в составную сеть, и несет наряду с другой служеб­ной информацией данные об адресе назначения этого пакета.

Для того чтобы протоколы сетевого уровня могли доставлять пакеты любому узлу составной сети, эти узлы должны иметь адреса, уникальные в пределах данной составной сети. Такие адреса называются сетевыми, или глобальными. Каждый узел составной сети, который намерен обмениваться данными с другими узлами составной сети, должен иметь сетевой адрес наряду с адресом, назначенным ему на канальном уровне. Например, на рис. 4.9 компьютер в сети Ethernet, входя­щей в составную сеть, имеет адрес канального уровня МАС1 и адрес сетевого уровня NET-A1; аналогично в сети ATM узел, адресуемый идентификаторами виртуальных каналов ID1 и ID2, имеет сетевой адрес NET-A2. В пакете в качест­ве адреса назначения должен быть указан адрес сетевого уровня, на основании которого определяется маршрут пакета. Определение маршрута является важ­ной задачей сетевого уровня. Маршрут описывается последовательностью сетей (или маршрутизаторов), через которые должен пройти пакет, чтобы попасть к адресату. Например, на рис. 4.9 штриховой линией показано 3 маршрута, по ко­торым могут быть переданы данные от компьютера А к компьютеру Б. Маршру­тизатор собирает информацию о топологии связей между сетями и на ее основа­нии строит таблицы коммутации, которые в данном случае носят специальное название таблиц маршрутизации. Задачу выбора маршрута мы уже коротко об­суждали в разделе «Обобщенная задача коммутации» главы 2.

В соответствии с многоуровневым подходом сетевой уровень для решения своей задачи обращается к нижележащему канальному уровню. Весь путь через со­ставную сеть разбивается на участки от одного маршрутизатора до другого, при­чем каждый участок соответствует пути через отдельную сеть.

Для того чтобы передать пакет через очередную сеть, сетевой уровень помещает его в поле данных кадра соответствующей канальной технологии, указывая в за­головке кадра канальный адрес интерфейса следующего маршрутизатора. Сеть, используя свою канальную технологию, доставляет кадр с инкапсулированным в него пакетом по заданному адресу. Маршрутизатор извлекает пакет из прибыв­шего кадра и после необходимой обработки передает пакет для дальнейшей транспортировки в следующую сеть, предварительно упаковав его в новый кадр канального уровня в общем случае другой технологии. Таким образом, сетевой уровень играет роль координатора, организующего совместную работу сетей, по­строенных на основе разных технологий.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: