Пептидная связь

Аминокислоты в полипептидной цепи связаны амидной связью, которая образуется между α-карбоксильной группой одной и α-аминогруппой следующей аминокислоты (рис. 1). Образующаяся между аминокислотами ковалентная связь получила название пептидной связи. Атомы кислорода и водорода пептидной группы при этом занимают трансположение.

Рис. 1. Схема образования пептидной связи. В каждом белке или пептиде можно выделить: N-конец белка или пептида, имеющий свободную а-аминогруппу (-NH2);

С-конец, имеющий свободную карбоксильную группу (-СООН);

Пептидный остов белков, состоящий из повторяющихся фрагментов: -NH-СН-СО-; Радикалы аминокислот (боковые цепи) (R1 и R2) - вариабельные группы.

Сокращенная запись полипептидной цепи, так же как и синтез белка в клетках, обязательно начинается с N-конца и заканчивается С-концом:

Названия аминокислот, включенных в пептид и образующих пептидную связь, имеют окончания -ил. Например, трипептид, приведенный выше, называется треонил-гистидил-пролин.

Единственной вариабельной частью, отличающей один белок от всех остальных, является сочетание радикалов (боковых цепей) аминокислот, входящих в него. Таким образом, индивидуальные свойства и функции белка обусловлены структурой и порядком чередования аминокислот в полипептидной цепи.

Полипептидные цепи разных белков организма могут включать от нескольких аминокислот до сотен и тысяч аминокислотных остатков. Их молекулярная масса (мол. масса) также колеблется в широких пределах. Так, гормон вазопрессин состоит из 9 аминокислот, мол. масса 1070 кД; инсулин - из 51 аминокислоты (в 2 цепях), мол. масса 5733 кД; лизоцим - из 129 аминокислот (1 цепь), мол. масса 13 930 кД; гемоглобин - из 574 аминокислот (4 цепи), мол. масса 64 500 кД; коллаген (тропоколлаген) - примерно из 1000 аминокислот (3 цепи), мол. масса ~130 000 кД.

Свойства и функция белка зависят от структуры и порядка чередования аминокислот в цепи, изменение аминокислотного состава может их сильно изменить. Так, 2 гормона задней доли гипофиза - окситоцин и вазопрессин - являются нанопептидами и отличаются 2 аминокислотами из 9 (в положении 3 и 8):

Основной биологический эффект окситоцина заключается в стимуляции сокращения гладкой мускулатуры матки при родах, а вазопрессин вызывает реабсорбцию воды в почечных канальцах (антидиуретический гормон) и обладает сосудосуживающим свойством. Таким образом, несмотря на большое структурное сходство, физиологическая активность этих пептидов и ткани-мишени, на которые они действуют, отличаются, т.е. замена всего 2 из 9 аминокислот вызывает существенное изменение функции пептида.

Иногда совсем небольшое изменение структуры крупного белка вызывает подавление его активности. Так, фермент алкогольдегидрогеназа, расщепляющий этанол в печени человека, состоит из 500 аминокислот (в 4 цепях). Активность его у жителей Азиатского региона (Япония, Китай и др.) намного ниже, чем у жителей Европы. Это связано с тем, что в полипептидной цепи фермента происходит замена глутаминовой кислоты на лизин в положении 487.

Взаимодействиями между радикалами аминокислот играют большое значение в стабилизации пространственной структуры белков, можно выделить 4 типа химических связей: гидрофобная, водородная, ионная, дисульфидная.

Гидрофобные связи возникают между неполярными гидрофобными радикалами (рис. 2). Они играют ведущую роль в формировании третичной структуры белковой молекулы.

Рис. 2. Гидрофобные взаимодействия между радикалами

Водородные связи - образуются между полярными (гидрофильными) незаряженными группами радикалов, имеющими подвижный атом водорода, и группами с электроотрицательным атомом (-О или -N-) (рис. 3).

Ионные связи образуются между полярными (гидрофильными) ионогенными радикалами, имеющими противоположно заряженные группы (рис. 4).

Рис. 3. Водородные связи между радикалами аминокислот

Рис. 4. Ионная связь между радикалами лизина и аспарагиновой кислоты (А) и примеры ионных взаимодействий (Б)

Дисульфидная связь - ковалентная, образуется двумя сульфгидрильными (тиольными) группами радикалов цистеина, находящимися в разных местах полипептидной цепи (рис. 5). Встречается в таких белках, как инсулин, инсулиновый рецептор, иммуноглобулины и др.

Дисульфидные связи стабилизируют пространственную структуру одной полипептидной цепи или связывают между собой 2 цепи (например, цепи А и В гормона инсулина) (рис. 6).

Рис. 5. Образование дисульфидной связи.

Рис. 6. Дисульфидные связи в молекуле инсулина. Дисульфидные связи: между остатками цистеина одной цепи А (а), между цепями А и В (б). Цифры - положение аминокислот в полипептидных цепях.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: